IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i7p3985-3991.html
   My bibliography  Save this article

A new scheme for cooling tower water conservation in arid-zone countries

Author

Listed:
  • Al-Bassam, E.
  • Maheshwari, G.P.

Abstract

Cooling towers (CTs) that are used for heat rejection in water-cooled (WC) systems consume a large quantity of water, which is generally not available naturally. CTs are selected when the maximal cooling load is desired and under the worst design conditions. Typically, CTs operate under partial-load conditions and/or favorable weather conditions. Moreover, for most of the summer season, the dry bulb temperature (DBT) of the incoming ambient air is significantly greater than the incoming hot water temperature, and the air undergoes sensible cooling. Currently, the control scheme that is commonly used in most CTs maintains a constant exiting water temperature for different cooling loads and a different ambient wet bulb temperature (WBT) by regulating the air circulation through the CT. The air circulation is reduced with the help of a variable frequency drive (VFD), which results in a significant reduction in the fan power of the CT. This paper presents an assessment of CT performance with a VFD application using a computer simulation program and illustrates a proposed scheme for maximal water savings. These theoretical results demonstrated that reducing the air flow by applying a VFD in a CT can achieve at least a 25% reduction in water consumption.

Suggested Citation

  • Al-Bassam, E. & Maheshwari, G.P., 2011. "A new scheme for cooling tower water conservation in arid-zone countries," Energy, Elsevier, vol. 36(7), pages 3985-3991.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:7:p:3985-3991
    DOI: 10.1016/j.energy.2011.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211003185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bedekar, S.V & Nithiarasu, P & Seetharamu, K.N, 1998. "Experimental investigation of the performance of a counter-flow, packed-bed mechanical cooling tower," Energy, Elsevier, vol. 23(11), pages 943-947.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Weiliang & Zhang, Hai & Li, Zheng & Lv, Junfu & Ni, Weidou & Li, Yongsheng, 2016. "Adoption of enclosure and windbreaks to prevent the degradation of the cooling performance for a natural draft dry cooling tower under crosswind conditions," Energy, Elsevier, vol. 116(P2), pages 1360-1369.
    2. Cui, Haijiao & Li, Nianping & Peng, Jinqing & Cheng, Jianlin & Li, Shengbing, 2016. "Study on the dynamic and thermal performances of a reversibly used cooling tower with upward spraying," Energy, Elsevier, vol. 96(C), pages 268-277.
    3. Goudarzi, Mohammad Ali, 2013. "Proposing a new technique to enhance thermal performance and reduce structural design wind loads for natural drought cooling towers," Energy, Elsevier, vol. 62(C), pages 164-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panjeshahi, Mohammad Hassan & Gharaie, Mona & Ataei, Abtin, 2010. "Debottlenecking procedure of effluent thermal treatment system," Energy, Elsevier, vol. 35(12), pages 5202-5208.
    2. He, Suoying & Gurgenci, Hal & Guan, Zhiqiang & Huang, Xiang & Lucas, Manuel, 2015. "A review of wetted media with potential application in the pre-cooling of natural draft dry cooling towers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 407-422.
    3. Ming Gao & Chang Guo & Chaoqun Ma & Yuetao Shi & Fengzhong Sun, 2017. "Thermal Performance for Wet Cooling Tower with Different Layout Patterns of Fillings under Typical Crosswind Conditions," Energies, MDPI, vol. 10(1), pages 1-8, January.
    4. Lemouari, M. & Boumaza, M. & Kaabi, A., 2011. "Experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower," Energy, Elsevier, vol. 36(10), pages 5815-5823.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:7:p:3985-3991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.