IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i9p1361-1368.html
   My bibliography  Save this article

Modal analysis of power systems to mitigate harmonic resonance considering load models

Author

Listed:
  • Esmaili, Masoud
  • Ali Shayanfar, Heidar
  • Jalilian, Alireza

Abstract

To detect and alleviate harmonic resonance in a power system have been a delicate issue. In this paper, the effect of load modeling on resonance behavior of power systems employing eigenvalue sensitivity analysis is investigated. The most influencing parameters to mitigate resonance modes are detected using the sensitivity of critical eigenvalues with respect to the network various components in a frequency range. Also, results inferred from the criteria of driving point impedance and bus participation factors are compared with those of the sensitivity analysis with different load models. Where to locate capacitors and filters to mitigate the resonance modes is obtained using these criteria. The methods are tested on the well-known New Zealand as well as IEEE-30 bus test systems. Simulation results are discussed in detail to investigate the methods’ efficiency and capability.

Suggested Citation

  • Esmaili, Masoud & Ali Shayanfar, Heidar & Jalilian, Alireza, 2008. "Modal analysis of power systems to mitigate harmonic resonance considering load models," Energy, Elsevier, vol. 33(9), pages 1361-1368.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:9:p:1361-1368
    DOI: 10.1016/j.energy.2008.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208001205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hocine, Labar & Yacine, Djeghader & Kamel, Bounaya & Samira, Kelaiaia Mounia, 2009. "Improvement of electrical arc furnace operation with an appropriate model," Energy, Elsevier, vol. 34(9), pages 1207-1214.
    2. Yazdani-Asrami, Mohammad & Mirzaie, Mohammad & Shayegani Akmal, Amir Abbas, 2013. "No-load loss calculation of distribution transformers supplied by nonsinusoidal voltage using three-dimensional finite element analysis," Energy, Elsevier, vol. 50(C), pages 205-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:9:p:1361-1368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.