IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i2p199-205.html
   My bibliography  Save this article

Energy analysis of a blast-furnace system operating with the Corex process and CO2 removal

Author

Listed:
  • Ziebik, Andrzej
  • Lampert, Krzysztof
  • Szega, Marcin

Abstract

The integration of the COREX process with the blast-furnace process, the installation of CO2 removal and gas-and-steam CHP plant displays many energy and ecological advantages. The application of COREX gas after the removal of CO2 as hot reducing gas leads first of all to a saving of coke. Besides the reduction of the consumption of coke, also the consumption of blast, high-purity oxygen, the amount and lower heating value (LHV) of blast-furnace gas are changed, as well as the production of electricity in the recovery turbine, the consumption of blast-furnace gas in the Cowper stoves and the amount of blast-furnace gas supplied to the gas-energy subsystem of the ironworks. Related to a unit amount of pig iron, these quantities are called energy characteristics of the blast-furnace assembly. They may be used to assess the energy process effects of applying COREX gas in the blast-furnace process. In order to assess the influence of injecting COREX gas into the thermal reserve zone, the zone balance method of the blast-furnace process has been used.

Suggested Citation

  • Ziebik, Andrzej & Lampert, Krzysztof & Szega, Marcin, 2008. "Energy analysis of a blast-furnace system operating with the Corex process and CO2 removal," Energy, Elsevier, vol. 33(2), pages 199-205.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:2:p:199-205
    DOI: 10.1016/j.energy.2007.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hocine, Labar & Yacine, Djeghader & Kamel, Bounaya & Samira, Kelaiaia Mounia, 2009. "Improvement of electrical arc furnace operation with an appropriate model," Energy, Elsevier, vol. 34(9), pages 1207-1214.
    2. Lampert, Krzysztof & Ziebik, Andrzej & Stanek, Wojciech, 2010. "Thermoeconomical analysis of CO2 removal from the Corex export gas and its integration with the blast-furnace assembly and metallurgical combined heat and power (CHP) plant," Energy, Elsevier, vol. 35(2), pages 1188-1195.
    3. Zhang, Wei & Zhang, Juhua & Xue, Zhengliang, 2017. "Exergy analyses of the oxygen blast furnace with top gas recycling process," Energy, Elsevier, vol. 121(C), pages 135-146.
    4. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:2:p:199-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.