IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i10p1562-1571.html
   My bibliography  Save this article

Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills

Author

Listed:
  • Savulescu, Luciana Elena
  • Alva-Argaez, Alberto

Abstract

The success of any process improvement study depends on the quality of the available data and the way in which the plant-specific characteristics are incorporated in the applied conceptual models; in the context of process integration studies these issues are directly related to the rules followed during the data extraction stage. Improving energy efficiency in a pulp and paper Kraft mill requires the identification of the most promising heat recovery network retrofit projects. In a retrofit analysis using pinch technology/process integration methods, only the process streams associated to the existing heat exchangers and some outlet streams (such as wastewater/effluent streams and vents) with high potential for heat recovery are usually included, while the energy exchanged through non-isothermal stream mixing (NIM) or direct heat transfer (DHT) is often assumed fixed and is not considered in the analysis. Relaxing this assumption requires extracting more data to represent the DHT design configuration that exists in the plant. However, different data extraction options can be considered to represent the DHT configuration depending on the associated process/operation constraints. This work describes a systematic procedure to extract and analyse the impacts of DHT on the overall energy efficiency of a Kraft process with a specific focus on mixing along the pulp line and in water tanks.

Suggested Citation

  • Savulescu, Luciana Elena & Alva-Argaez, Alberto, 2008. "Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills," Energy, Elsevier, vol. 33(10), pages 1562-1571.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:10:p:1562-1571
    DOI: 10.1016/j.energy.2008.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208001783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leewongtanawit, Boondarik & Kim, Jin-Kuk, 2009. "Improving energy recovery for water minimisation," Energy, Elsevier, vol. 34(7), pages 880-893.
    2. Bujak, Janusz, 2009. "Optimal control of energy losses in multi-boiler steam systems," Energy, Elsevier, vol. 34(9), pages 1260-1270.
    3. Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
    4. Ibrić, Nidret & Ahmetović, Elvis & Kravanja, Zdravko & Maréchal, François & Kermani, Maziar, 2017. "Simultaneous synthesis of non-isothermal water networks integrated with process streams," Energy, Elsevier, vol. 141(C), pages 2587-2612.
    5. Mateos-Espejel, Enrique & Savulescu, Luciana & Maréchal, François & Paris, Jean, 2010. "Systems interactions analysis for the energy efficiency improvement of a Kraft process," Energy, Elsevier, vol. 35(12), pages 5132-5142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:10:p:1562-1571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.