IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i2p128-136.html
   My bibliography  Save this article

Determination of acceptable operating cost level of nuclear energy for Turkey's power system

Author

Listed:
  • Yildirim, Mehmet
  • Erkan, Kadir

Abstract

Generally, it is very difficult to assess the true operating cost of an electrical power unit in the countries where there is little or no operational experience. Since Turkey has no experience on operating a nuclear unit, operating costs of a nuclear unit is uncertain for use in generation expansion planning (GEP). Furthermore, there is a disagreement of whether it is cheap or not. In this study, an acceptable level of operating cost of nuclear units is determined for Turkey's power system. It is aimed to find a numerical value for nuclear operating cost at which nuclear is able to compete with other energy sources. Seven types of units are chosen as candidate units to the power system. Mixed-integer programming (MIP) is used as a mathematical model of generation expansion planning. The model consists of the cost function that minimizes the construction and operating costs and the reliability constraints. Adaptive simulated annealing genetic algorithm (ASAGA) is used for optimization algorithm to determine the types, times, and number of candidate units which meet forecasted demand within a pre-specified reliability criterion over the planning horizon from 2006 to 2025. In the case studies, a high level of nuclear energy operating cost is taken and then the cost is gradually lowered. Optimizations are made for each level of nuclear operating costs within four different scenarios and the quantities of nuclear capacity selected by optimizations are recorded. It is determined that, nuclear energy is able to compete with other energy sources when the operating cost is less than 210$/kWhyr or 2.4cent/kWh.

Suggested Citation

  • Yildirim, Mehmet & Erkan, Kadir, 2007. "Determination of acceptable operating cost level of nuclear energy for Turkey's power system," Energy, Elsevier, vol. 32(2), pages 128-136.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:2:p:128-136
    DOI: 10.1016/j.energy.2006.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Topcu, Y.I & Ulengin, F, 2004. "Energy for the future: An integrated decision aid for the case of Turkey," Energy, Elsevier, vol. 29(1), pages 137-154.
    2. Ulutaş, Berna Haktanırlar, 2005. "Determination of the appropriate energy policy for Turkey," Energy, Elsevier, vol. 30(7), pages 1146-1161.
    3. Güngör, Z. & Bozkurt, G., 1999. "Economical comparison of imported energy sources in terms of long-term production planning," Energy, Elsevier, vol. 24(1), pages 31-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    2. Selçuklu, Saltuk Buğra & Coit, D.W. & Felder, F.A., 2023. "Electricity generation portfolio planning and policy implications of Turkish power system considering cost, emission, and uncertainty," Energy Policy, Elsevier, vol. 173(C).
    3. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    4. Talinli, Ilhan & Topuz, Emel & Uygar Akbay, Mehmet, 2010. "Comparative analysis for energy production processes (EPPs): Sustainable energy futures for Turkey," Energy Policy, Elsevier, vol. 38(8), pages 4479-4488, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    2. Kahraman, Cengiz & Kaya, İhsan & Cebi, Selcuk, 2009. "A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process," Energy, Elsevier, vol. 34(10), pages 1603-1616.
    3. Selçuklu, Saltuk Buğra & Coit, D.W. & Felder, F.A., 2023. "Electricity generation portfolio planning and policy implications of Turkish power system considering cost, emission, and uncertainty," Energy Policy, Elsevier, vol. 173(C).
    4. Karaaslan, Abdulkerim & Gezen, Mesliha, 2022. "The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coefficient," Renewable Energy, Elsevier, vol. 182(C), pages 842-854.
    5. Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
    6. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    7. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    8. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    9. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    10. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    11. Jan Macháč & Lenka Zaňková, 2020. "Renewables—To Build or Not? Czech Approach to Impact Assessment of Renewable Energy Sources with an Emphasis on Municipality Perspective," Land, MDPI, vol. 9(12), pages 1-15, December.
    12. Xing Gao & Cheng Shi & Keyu Zhai, 2018. "An Evaluation of Environmental Governance in Urban China Based on a Hesitant Fuzzy Linguistic Analytic Network Process," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    13. Gitinavard, Hossein & Mousavi, S. Meysam & Vahdani, Behnam, 2017. "Soft computing based on hierarchical evaluation approach and criteria interdependencies for energy decision-making problems: A case study," Energy, Elsevier, vol. 118(C), pages 556-577.
    14. Say, Nuriye Peker, 2006. "Lignite-fired thermal power plants and SO2 pollution in Turkey," Energy Policy, Elsevier, vol. 34(17), pages 2690-2701, November.
    15. Yolandi Schoeman & Paul Oberholster & Vernon Somerset, 2021. "A Zero-Waste Multi-Criteria Decision-Support Model for the Iron and Steel Industry in Developing Countries: A Case Study," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    16. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    17. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    18. Esra Karaka & Ozan Veli Y ld ran, 2019. "Evaluation of Renewable Energy Alternatives for Turkey via Modified Fuzzy AHP," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 31-39.
    19. Büyüközkan, Gülçin & Güleryüz, Sezin, 2017. "Evaluation of Renewable Energy Resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations," Energy, Elsevier, vol. 123(C), pages 149-163.
    20. Meyar-Naimi, H. & Vaez-Zadeh, S., 2012. "Sustainable development based energy policy making frameworks, a critical review," Energy Policy, Elsevier, vol. 43(C), pages 351-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:2:p:128-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.