IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i11p2148-2156.html
   My bibliography  Save this article

Design and control of an ideal heat-integrated distillation column (ideal HIDiC) system separating a close-boiling ternary mixture

Author

Listed:
  • Huang, Kejin
  • Shan, Lan
  • Zhu, Qunxiong
  • Qian, Jixin

Abstract

Despite the fact that a stand-alone ideal heat-integrated distillation column (ideal HIDiC) can be thermodynamically efficient and operationally stable, the application of an ideal HIDiC system to separate a close-boiling multi-component mixture is still a challenging problem because of the possibility of strong interactions within/between the ideal HIDiCs involved. In this work, employment of two ideal HIDiCs to separate a close-boiling ternary mixture is studied in terms of static and dynamic performance. It is found that the ideal HIDiC system can be a competitive alternative with a substantial energy saving and comparable dynamic performance in comparison with its conventional counterpart. The direct sequence appears to be superior to the indirect sequence due to the relatively small vapor flow rates to the compressors. Controlling the bottom composition of the first ideal HIDiC with the pressure elevation from the stripping section to the rectifying section helps to suppress the disturbances from the feed to the second ideal HIDiC. Special caution should, however, be taken when the latent heat of the distillates is to be recovered within/between the ideal HIDiCs involved, because a positive feedback mechanism may be formed and give rise to additional difficulties in process operation.

Suggested Citation

  • Huang, Kejin & Shan, Lan & Zhu, Qunxiong & Qian, Jixin, 2007. "Design and control of an ideal heat-integrated distillation column (ideal HIDiC) system separating a close-boiling ternary mixture," Energy, Elsevier, vol. 32(11), pages 2148-2156.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:11:p:2148-2156
    DOI: 10.1016/j.energy.2007.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207000746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    2. Jana, Amiya K., 2010. "Heat integrated distillation operation," Applied Energy, Elsevier, vol. 87(5), pages 1477-1494, May.
    3. Van Duc Long, Nguyen & Lee, Moonyong, 2013. "A novel NGL (natural gas liquid) recovery process based on self-heat recuperation," Energy, Elsevier, vol. 57(C), pages 663-670.
    4. Markowski, Mariusz & Trafczynski, Marian & Kisielewski, Piotr, 2022. "The dynamic model of a rectification heat exchanger using the concept of heat-integrated distillation column," Energy, Elsevier, vol. 256(C).
    5. Kiran, Bandaru & Jana, Amiya K. & Samanta, Amar Nath, 2012. "A novel intensified heat integration in multicomponent distillation," Energy, Elsevier, vol. 41(1), pages 443-453.
    6. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:11:p:2148-2156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.