IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i11p2038-2050.html
   My bibliography  Save this article

Exergetic comparison of efficiency indicators for combined heat and power (CHP)

Author

Listed:
  • Ertesvåg, Ivar S.

Abstract

Legislative regulations in favor of combined heat and power (CHP) production have been implemented in many countries. Although these regulations put different emphasis on power production vs. process heat production, they are based on energy quantities and not on exergy. In order to analyze and compare the exergetic consequences of the various legislations, a relative avoided irreversibility (RAI) is defined. This can be regarded as the exergy loss that is avoided when reference plants with separate production are replaced by an actual CHP plant. Some series of industrial and district heating CHP plants, under varying operational conditions, are used as test cases. It is seen that some, but not all, CHP cases are exergetically beneficial to separate generation. Comparison with the RAI allows a quantitative assessment of the various performance indicators. It is seen that exergetic improvements were only captured to a limited degree by the various energy-based efficiency indicators. Some legislatively defined indicators even appear to discourage thermodynamic improvements.

Suggested Citation

  • Ertesvåg, Ivar S., 2007. "Exergetic comparison of efficiency indicators for combined heat and power (CHP)," Energy, Elsevier, vol. 32(11), pages 2038-2050.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:11:p:2038-2050
    DOI: 10.1016/j.energy.2007.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207000916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardona, E. & Piacentino, A., 2005. "Cogeneration: a regulatory framework toward growth," Energy Policy, Elsevier, vol. 33(16), pages 2100-2111, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piacentino, Antonio & Barbaro, Chiara & Cardona, Fabio & Gallea, Roberto & Cardona, Ennio, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part I: Description of the method," Applied Energy, Elsevier, vol. 111(C), pages 1204-1221.
    2. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.
    3. Maraver, Daniel & Sin, Ana & Sebastián, Fernando & Royo, Javier, 2013. "Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation," Energy, Elsevier, vol. 57(C), pages 17-23.
    4. Adrian Neacșa & Mirela Panait & Jianu Daniel Mureșan & Marian Catalin Voica & Otilia Manta, 2022. "The Energy Transition between Desideratum and Challenge: Are Cogeneration and Trigeneration the Best Solution?," IJERPH, MDPI, vol. 19(5), pages 1-22, March.
    5. Caresana, Flavio & Brandoni, Caterina & Feliciotti, Petro & Bartolini, Carlo Maria, 2011. "Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator," Applied Energy, Elsevier, vol. 88(3), pages 659-671, March.
    6. Chicco, Gianfranco & Mancarella, Pierluigi, 2007. "Trigeneration primary energy saving evaluation for energy planning and policy development," Energy Policy, Elsevier, vol. 35(12), pages 6132-6144, December.
    7. Badami, M. & Camillieri, F. & Portoraro, A. & Vigliani, E., 2014. "Energetic and economic assessment of cogeneration plants: A comparative design and experimental condition study," Energy, Elsevier, vol. 71(C), pages 255-262.
    8. Frangopoulos, Christos A., 2012. "A method to determine the power to heat ratio, the cogenerated electricity and the primary energy savings of cogeneration systems after the European Directive," Energy, Elsevier, vol. 45(1), pages 52-61.
    9. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    10. Mancarella, Pierluigi & Chicco, Gianfranco, 2009. "Global and local emission impact assessment of distributed cogeneration systems with partial-load models," Applied Energy, Elsevier, vol. 86(10), pages 2096-2106, October.
    11. Dentice d’Accadia, Massimo & Musto, Marilena, 2011. "Engineering analysis of uncertainties in the performance evaluation of CHP systems," Applied Energy, Elsevier, vol. 88(12), pages 4927-4935.
    12. Carvalho, Monica & Serra, Luis Maria & Lozano, Miguel Angel, 2011. "Optimal synthesis of trigeneration systems subject to environmental constraints," Energy, Elsevier, vol. 36(6), pages 3779-3790.
    13. Mancarella, Pierluigi & Chicco, Gianfranco, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases," Energy, Elsevier, vol. 33(3), pages 418-430.
    14. Ziębik, Andrzej & Gładysz, Paweł, 2012. "Optimal coefficient of the share of cogeneration in district heating systems," Energy, Elsevier, vol. 45(1), pages 220-227.
    15. Moreira, João M.L. & Cesaretti, Marcos A. & Carajilescov, Pedro & Maiorino, José R., 2015. "Sustainability deterioration of electricity generation in Brazil," Energy Policy, Elsevier, vol. 87(C), pages 334-346.
    16. Tamburini, A. & Cipollina, A. & Micale, G. & Piacentino, A., 2016. "CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with thermal vapour compression) desalination plant: high efficiency assessment for different design opti," Energy, Elsevier, vol. 115(P3), pages 1548-1559.
    17. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Matrix modelling of small-scale trigeneration systems and application to operational optimization," Energy, Elsevier, vol. 34(3), pages 261-273.
    18. Lončar, D. & Duić, N. & Bogdan, Ž., 2009. "An analysis of the legal and market framework for the cogeneration sector in Croatia," Energy, Elsevier, vol. 34(2), pages 134-143.
    19. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "Industrial combined heat and power (CHP) planning: Development of a methodology and application in Greece," Applied Energy, Elsevier, vol. 88(5), pages 1519-1531, May.
    20. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:11:p:2038-2050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.