IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225012150.html
   My bibliography  Save this article

Characteristics of ignition, combustion and emission formation of premixed ammonia-hydrogen blends by hydrogen-fueled pre-chamber turbulent jets

Author

Listed:
  • Guo, Xinpeng
  • Li, Tie
  • Huang, Shuai
  • Zhou, Xinyi
  • Chen, Run
  • Wei, Wenze
  • Wu, Zehao
  • Wang, Ning
  • Li, Shiyan

Abstract

Ammonia combustion initiated by hydrogen-fueled pre-chamber jets is a prospective combustion concept for enhancing ammonia combustion. However, the related fundamental studies on the ignition, combustion, and emissions characteristics of various ammonia + hydrogen blends by hydrogen-fueled pre-chamber jets are still inadequate. In this work, the effects of various ammonia + hydrogen blends in the main chamber with the hydrogen volumetric blending ratio ranging from 0 % to 50 % and the orientations of the orifice, i.e., inclined and straight orifice, are optically studied by the double-pass Schlieren imaging. The results indicate that increasing the hydrogen blending ratio markedly enhances the ignition characteristics of the mixture, resulting in the identification of three distinct ignition modes: re-ignition, secondary jet ignition, and jet flame ignition. The combustion regimes shift from the broken reaction zone to thin reaction zone. Increasing the hydrogen blending ratio improves the ammonia combustion efficiency from 96.9 % to 98.6 %, significantly reducing the unburned ammonia emissions. A high proportion of blended hydrogen increases the NOx emissions, while both low and high blends cause the reduction of N2O emissions. Additionally, the presence of straight orifice enhances the combustion of the mixture, while its emission levels remain comparable to those of the nozzle featuring all inclined orifices.

Suggested Citation

  • Guo, Xinpeng & Li, Tie & Huang, Shuai & Zhou, Xinyi & Chen, Run & Wei, Wenze & Wu, Zehao & Wang, Ning & Li, Shiyan, 2025. "Characteristics of ignition, combustion and emission formation of premixed ammonia-hydrogen blends by hydrogen-fueled pre-chamber turbulent jets," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012150
    DOI: 10.1016/j.energy.2025.135573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225012150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.