Author
Listed:
- Kumar, S. Senthil
- Srinivasan, C.
- Balavignesh, S.
Abstract
The intermittent nature of Renewable Energy Sources (RES) presents a major challenge to grid stability. Unlike conventional energy sources such as fossil fuels, RES generation is influenced by factors like weather conditions and time of day, leading to unpredictable fluctuations. This unpredictability can cause imbalances between supply and demand, potentially compromising grid stability and reliability. To address this issue, this research proposes a framework for the optimal management of microgrids, consisting of three key stages: forecasting, optimal dispatch, and management planning. The framework begins with power generation and load forecasts using the Extended Neural Basis Expansion Analysis (ExN-BEATS) model. The forecasting results serve as inputs for an optimization model that incorporates decision variables for generating units, energy storage system (ESS) charge/discharge plans, and power exchange. The optimization model aims to minimize operating costs while respecting technical and operational constraints. The Mutated Bald Eagle Optimization (MBEO) algorithm, inspired by the hunting behavior of eagles, is introduced to efficiently optimize the control of generators, ESS, and power exchange. The load forecasting analysis demonstrated that the ExN-BEATS model outperformed existing models, achieving an MAE of 5.3 kW, MAPE of 1.5 %, and RMSE of 6.9 kW, making it the most accurate for predicting load consumption. Furthermore, three load dispatch cases were analyzed, including the integration of EVs and ESS. The addition of ESS shifted the grid's peak load to off-peak hours, improving grid stability. In Cases 2 and 3, coordinated EV charging and discharging led to further cost reductions. To evaluate the optimization performance, Hypervolume (HV) was used as the primary metric, and the MBEO algorithm achieved the highest HV score of 0.9635, indicating superior trade-offs between objectives. Overall, the proposed framework, combining ExN-BEATS for forecasting and MBEO for optimal dispatch, demonstrates exceptional accuracy, efficiency, and cost-effectiveness in managing microgrid resources, highlighting the practical benefits of advanced forecasting and optimization techniques for real-world applications.
Suggested Citation
Kumar, S. Senthil & Srinivasan, C. & Balavignesh, S., 2025.
"Enhancing grid integration of renewable energy sources for micro grid stability using forecasting and optimal dispatch strategies,"
Energy, Elsevier, vol. 322(C).
Handle:
RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012149
DOI: 10.1016/j.energy.2025.135572
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012149. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.