IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics0360544225011557.html
   My bibliography  Save this article

Energy integration of LNG cold energy power generation and liquefied air energy storage: Process design, optimization and analysis

Author

Listed:
  • Li, Ran
  • Tang, Feiran
  • Pan, Jie
  • Cao, Qinghan
  • Hu, Tinglong
  • Wang, Ke

Abstract

Liquefied natural gas (LNG) has a large amount of cold energy, and recovering LNG cold energy can not only reduce dependence on traditional energy and promote sustainable energy development but also reduce pollutant emissions, and liquified air energy storage (LAES) is an advanced energy storage technology, but its electrical round trip efficiency (ERTE) is low due to the lack of sufficient cold energy. Thus, to improve the efficiency and benefit of LNG cold energy utilization and the ERTE of LAES, an integrated power generation system combining organic Rankine cycle (ORC) with LAES driven by LNG cold energy (denoted as LNG-ORC-LAES) is proposed in this paper. The system operates in two modes, utilizing LNG cold energy at peak and off-peak times. The system is optimized under different peak electricity price scenarios by using multi-objective optimizations to achieve better performance. The LINMAP (Linear Programming Technique for Multidimensional Analysis of Preference) and TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) methods can dimensionless the optimization results and calculate the distance between each point on the optimal Pareto surfaces and the ideal point, so the two decision methods are used to screen the optimization results. The exergy efficiency and specific net output power of existing similar systems are ∼70.31 % and ∼94.75 kJ/kgLNG, but they can achieve 72.26 % and 124.43 kJ/kgLNG respectively after multi-objective optimization in the proposed system, and the high net present value (NPV) is obtained, the optimized system exhibits superior performance than other similar systems. The energy and exergy analysis demonstrate that the LNG cold energy utilization ratio can reach 81.96 % under optimal working conditions, the LNG cold exergy can be fully utilized by LAES. The results show that the proposed system has industrial and economic feasibility, which provides a design concept with practical significance for energy development.

Suggested Citation

  • Li, Ran & Tang, Feiran & Pan, Jie & Cao, Qinghan & Hu, Tinglong & Wang, Ke, 2025. "Energy integration of LNG cold energy power generation and liquefied air energy storage: Process design, optimization and analysis," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011557
    DOI: 10.1016/j.energy.2025.135513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.