IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics0360544225005961.html
   My bibliography  Save this article

Research on power generation and waste heat utilization performance of a novel gas-CO2 combined cycle

Author

Listed:
  • Zhang, Jingkui
  • Yan, Wen
  • Fan, Yi
  • Cui, He
  • Song, Xiaona
  • Zhang, Jiakai

Abstract

To enhance the utilization rate and quality of waste heat from gas turbine flue gas, this paper proposes a gas-CO2 combined cycle power generation system based on the principle of the Ericsson cycle. The system comprises a CO2 cycle power generation system and a gas turbine power generation system. The CO2 cycle utilizes the waste heat flue gas discharged from the gas turbine for power generation, employing an approximate isothermal process and an isobaric process, following the Ericsson cycle principle. Furthermore, the combined system can utilize off-peak electricity for energy storage through CO2 storage tanks. This paper constructs a simulation model of the gas-CO2 combined cycle power generation system using simulation software. Based on the validation of the simulation's effectiveness, the performance of the gas-CO2 combined cycle system, which is based on the approximate Ericsson cycle, and its parameter-dependent behavior are explored. The results indicate that increasing the CO2 mass flow rate within a certain range significantly enhances system power generation efficiency. However, the efficiency tends to stabilize at excessively high flow rates. Increasing the compressor pressure ratio does not significantly affect the overall system power generation efficiency, while an increase in ambient temperature leads to a decrease in gas turbine load, thus impacting system power generation efficiency. Conversely, increasing the gas turbine load ratio can significantly improve the combined cycle system's power generation efficiency and the contribution of the CO2 cycle. Compared to a single gas turbine, the combined system significantly improves overall power generation efficiency. At a full gas turbine load of 3387 kW, the maximum power generation efficiency of the gas-CO2 combined cycle is 30.21 %, with the CO2 cycle contributing 4.04 %. At this point, the flue gas waste heat utilization efficiency reaches 33.34 %. This system provides a viable solution for waste heat utilization and energy storage in small- and medium-sized energy supply systems.

Suggested Citation

  • Zhang, Jingkui & Yan, Wen & Fan, Yi & Cui, He & Song, Xiaona & Zhang, Jiakai, 2025. "Research on power generation and waste heat utilization performance of a novel gas-CO2 combined cycle," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225005961
    DOI: 10.1016/j.energy.2025.134954
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225005961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.