IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008734.html
   My bibliography  Save this article

Multi-state CO2 distribution patterns for subsea carbon sequestration assisted by large-scale CO2 hydrate caps

Author

Listed:
  • Xia, Yongqiang
  • Yu, Tao
  • Yang, Lei
  • Chen, Bingbing
  • Jiang, Lanlan
  • Yang, Mingjun
  • Song, Yongchen

Abstract

Hydrate-based CO2 storage in subsea sediments presents a promising solution for safe carbon sequestration, as CO2 hydrate caps effectively reduce CO2 leakage risk. However, the effectiveness of using large-scale hydrate caps to achieve substantial CO2 sequestration is still uncertain. This study developed a numerical model for CO2 sequestration in sediment environments. The distribution patterns of multi-state CO2 (i.e., free, dissolved, and hydrate states) and the effectiveness of hydrate caps were investigated using single-horizontal-well and dual-horizontal-well systems. The findings indicated that a higher injection rate expedited the formation rate of CO2 hydrate caps but reduced the dissolved CO2 sequestration efficiency within the hydrate formation zone and the free phase zone. At the same CO2 sequestration amount, a low-flow-rate prolonged injection strategy could mitigate the pressure accumulation near the well and broaden the distribution range of the hydrate cap. Smaller well spacing facilitated the formation of a larger hydrate cap during the dual-well CO2 sequestration, with the thickness of the hydrate cap increasing by approximately 12 m over 50 years after CO2 injection cessation. Furthermore, a low-permeability mud cap interfered with the processes of CO2 plume migration and heat transfer, exacerbating the stratum instability near the injection well within the hydrate formation zone. This study provided new insights into forming large-scale CO2 hydrate caps and contributed to developing the CO2 storage technology in subsea sediments.

Suggested Citation

  • Xia, Yongqiang & Yu, Tao & Yang, Lei & Chen, Bingbing & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2025. "Multi-state CO2 distribution patterns for subsea carbon sequestration assisted by large-scale CO2 hydrate caps," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008734
    DOI: 10.1016/j.energy.2025.135231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.