IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008667.html
   My bibliography  Save this article

Capacity planning for large-scale wind-photovoltaic-pumped hydro storage energy bases based on ultra-high voltage direct current power transmission

Author

Listed:
  • Sun, Jianyang
  • Su, Chengguo
  • Song, Jingchao
  • Yao, Chenchen
  • Ren, Zaimin
  • Sui, Quan

Abstract

To address the mismatch between renewable energy resources and load centers in China, this study proposes a two-layer capacity planning model for large-scale wind-photovoltaic-pumped hydro storage energy bases integrated with ultra-high-voltage direct current transmission lines. The model introduces a multi-mode operational framework, enhancing its adaptability to diverse regional conditions and operational scenarios. Additionally, it explicitly incorporates ultra-high-voltage direct current operational constraints, ensuring realistic and robust transmission planning. The outer-layer focuses on capacity optimization, while the inner-layer employs an 8760-h time-series simulation to comprehensively evaluate operational performance under varying conditions, offering a practical and generalizable solution for renewable energy base planning. The case study shows that: (1) Integrated operation of wind and photovoltaic power with pumped hydro storage enhances transmission stability and efficiency, achieving a power supply guarantee rate over 90 % and curtailment rate below 15 %. (2) Under free transmission mode, the transmission curve is smooth and stable, with power supply guarantee rate surpassing 99 % and curtailment rate under 4 %. (3) Due to temporal mismatches between renewable generation and load demand in Northwest China, the agreed transmission curve mode reveals that pumped hydro storage alone is insufficient to meet external transmission needs, requiring gas turbine units for collaborative regulation.

Suggested Citation

  • Sun, Jianyang & Su, Chengguo & Song, Jingchao & Yao, Chenchen & Ren, Zaimin & Sui, Quan, 2025. "Capacity planning for large-scale wind-photovoltaic-pumped hydro storage energy bases based on ultra-high voltage direct current power transmission," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008667
    DOI: 10.1016/j.energy.2025.135224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.