IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008138.html
   My bibliography  Save this article

Optimal scheduling of integrated energy system considering exergoeconomic performance

Author

Listed:
  • Peng, Shiyun
  • Liu, Sha
  • Wu, Xiao

Abstract

Scheduling of integrated energy system (IES) is crucial for coordinating multiple components to achieve optimal operation of the entire system. Conventional scheduling methods only consider one of operating efficiency or economy, which makes it difficult to comprehensively improve the operational quality of the IES. To this end, this paper proposes an exergoeconomic optimization scheduling method for the IES based on a novel performance indicator, namely the specific exergy cost. Defined as the ratio of the exergy cost and the exergy production, the specific exergy cost reflects the quantity and quality distributions of both fuel and product flows, thus integrates exergy efficiency and economic factors into a unified framework. Optimal loading of each equipment is then determined through minimizing the specific exergy cost indicator. Simulation results on a typical combined cooling, heating and power IES show that the proposed method reduces the specific exergy cost by 9.60 % and increases exergy efficiency by 4.66 % compared with conventional economic-based scheduling. In-depth investigations are carried out under internal operating parameters and external market condition changes, which further demonstrate the effectiveness and applicability of the proposed exergoeconomic scheduling approach.

Suggested Citation

  • Peng, Shiyun & Liu, Sha & Wu, Xiao, 2025. "Optimal scheduling of integrated energy system considering exergoeconomic performance," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008138
    DOI: 10.1016/j.energy.2025.135171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.