IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i15p3415-3425.html
   My bibliography  Save this article

Heat transfer in a twin-screw multiphase pump: Thermal modeling and one application in the petroleum industry

Author

Listed:
  • Nakashima, Celso Y.
  • de Oliveira, Silvio
  • Caetano, E.F.

Abstract

This paper presents a model of the heat transfer processes in the casing and rotors of a twin-screw multiphase pump. The model was developed to study the influence of temperature rise in the subsea multiphase pumping system-500 (SMPS), being developed by Petrobras, that operates with a twin-screw multiphase pump. The model is divided in three parts: heat transfer in the casing, in the rotor and energy balance of fluid. For the rotor, a helicoidal coordinate system is used to calculate the heat transfer. Axial symmetry is considered so it is possible to construct a two-dimensional model. The casing is modeled using an eccentric cylindrical coordinate system. In this case, the temperature gradient in axial direction is neglected and a two-dimensional calculation is carried out. The finite volume method is used to solve the transformed partial differential equations. With the two heat transfer models implemented, the fluid temperature is calculated using a simple energy balance that takes into account electric power, transferred heat and fluid internal energy. The implemented model was used to simulate thermal behavior of casing and rotors during loss of prime events faced by SMPS-500. Experimental data collected in pump trials are used as initial input parameters and the model calculates temperature evolution during the loss of prime events.

Suggested Citation

  • Nakashima, Celso Y. & de Oliveira, Silvio & Caetano, E.F., 2006. "Heat transfer in a twin-screw multiphase pump: Thermal modeling and one application in the petroleum industry," Energy, Elsevier, vol. 31(15), pages 3415-3425.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3415-3425
    DOI: 10.1016/j.energy.2006.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Mou & Li, Xiaoxiao & Deng, Jianmin & Meng, Yingfeng & Li, Gao, 2015. "Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions," Energy, Elsevier, vol. 91(C), pages 1018-1029.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3415-3425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.