IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i10p1554-1566.html
   My bibliography  Save this article

A chemically intercooled gas turbine cycle for recovery of low-temperature thermal energy

Author

Listed:
  • Jin, Hongguang
  • Hong, Hui
  • Cai, Ruixian

Abstract

In this paper, we have proposed a gas turbine combined cycle with the integration of low-temperature thermal energy and methanol decomposition, and also investigated a principle of the cascade utilization of chemical exergy of fuel. Here, the combustion of methanol fuel is divided up into two steps: the methanol is decomposed into the syngas with hydrogen and carbon monoxide through recovering the low-temperature thermal energy from an intercooler of a gas turbine, and then the syngas is combusted with air, namely, the indirect combustion of methanol. As a result, the exergy destruction in the combustion of syngas is expected to be decreased by 7.5 percentage points of the input energy of cycle; at the same time, the low-temperature thermal energy is upgraded to the chemical energy of fuel, and the thermal efficiency of this gas turbine cycle is expected to be about 6 percent points higher than that of a conventionally combined cycle with intercooling at the turbine inlet temperature of 1300°C and at a given overall pressure ratio of 15. The promising results obtained here indicated that this gas turbine combined cycle could simultaneously accomplish the decrease of exergy destruction in combustion and the upgrade of low-temperature thermal energy levels, leading to the effective utilization of clean syngas fuel and the recovery of low-temperature thermal energy in power system.

Suggested Citation

  • Jin, Hongguang & Hong, Hui & Cai, Ruixian, 2006. "A chemically intercooled gas turbine cycle for recovery of low-temperature thermal energy," Energy, Elsevier, vol. 31(10), pages 1554-1566.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:10:p:1554-1566
    DOI: 10.1016/j.energy.2005.05.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544205001349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2005.05.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    2. Jin, Hongguang & Xu, Gang & Han, Wei & Gao, Lin & Li, Zheng, 2010. "Sustainable development of energy systems for western China," Energy, Elsevier, vol. 35(11), pages 4313-4318.
    3. Blanco, Elena C. & Sánchez, Antonio & Martín, Mariano & Vega, Pastora, 2023. "Methanol and ammonia as emerging green fuels: Evaluation of a new power generation paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    4. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    5. Sanjay, & Prasad, Bishwa N., 2013. "Energy and exergy analysis of intercooled combustion-turbine based combined cycle power plant," Energy, Elsevier, vol. 59(C), pages 277-284.
    6. Luo, Chending & Zhang, Na & Lior, Noam & Lin, Hu, 2011. "Proposal and analysis of a dual-purpose system integrating a chemically recuperated gas turbine cycle with thermal seawater desalination," Energy, Elsevier, vol. 36(6), pages 3791-3803.
    7. Zhang, Guoqiang & Yang, Yongping & Jin, Hongguang & Xu, Gang & Zhang, Kai, 2013. "Proposed combined-cycle power system based on oxygen-blown coal partial gasification," Applied Energy, Elsevier, vol. 102(C), pages 735-745.
    8. Choudhary, Tushar & Sanjay,, 2017. "Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization," Energy, Elsevier, vol. 134(C), pages 1013-1028.
    9. Xiaosong Zhang & Sheng Li & Hongguang Jin, 2014. "A Polygeneration System Based on Multi-Input Chemical Looping Combustion," Energies, MDPI, vol. 7(11), pages 1-12, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:10:p:1554-1566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.