IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225007571.html
   My bibliography  Save this article

Enhanced applicability of reinforcement learning-based energy management by pivotal state-based Markov trajectories

Author

Listed:
  • Chen, Jiaxin
  • Tang, Xiaolin
  • Wang, Meng
  • Li, Cheng
  • Li, Zhangyong
  • Qin, Yechen

Abstract

Data- or sample-driven reinforcement learning (RL) is crucial for advancing AI models, enabling supervised learning-based AI to evolve autonomously. However, sample efficiency remains a key challenge, and simply increasing the number of training samples is not a guaranteed solution. More importantly, the focus should be on the breadth and diversity of the data distribution. This paper focuses on hybrid electric vehicles, with an emphasis on energy management. A novel training scheme for RL-based energy-saving policies is proposed, which relies on pivotal Markov transitions as state-based trajectories, significantly enhancing the adaptability of learning-based strategies. Firstly, the contradictions and limitations of the optimization terms in traditional reward functions are highlighted, including the misguidance of cumulative states and the cumbersome adjustment of weights. To address these issues, an unweighted reward is designed to simplify the training process and make it more universal. Secondly, the state-based featured driving cycle, as a novel concept, employs a 'question bank' style environment to expose the RL agent to a more diverse state space. Even with more sources and larger volumes of velocity data, the representative driving cycle can be condensed into customizable lengths of time domain, serving as the pivotal state-based Markov trajectory. Finally, after finishing offline training on the Tencent cloud server, an online driver-in-the-loop test is performed. The core advantage of the proposed strategy lies in completing the training in one go while offering greater applicability, aligning with the training concept more suitable for RL-based agents.

Suggested Citation

  • Chen, Jiaxin & Tang, Xiaolin & Wang, Meng & Li, Cheng & Li, Zhangyong & Qin, Yechen, 2025. "Enhanced applicability of reinforcement learning-based energy management by pivotal state-based Markov trajectories," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007571
    DOI: 10.1016/j.energy.2025.135115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.