IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225007418.html
   My bibliography  Save this article

Optimizing solar photovoltaic system performance: Insights and strategies for enhanced efficiency

Author

Listed:
  • Gawusu, Sidique
  • Zhang, Xiaobing
  • Yakubu, Sufyan
  • Debrah, Seth Kofi
  • Das, Oisik
  • Bundela, Nishant Singh

Abstract

This study analyzes the performance and predictive modeling of solar photovoltaic (PV) systems at the Bui Generating Station in Ghana using the XGBoost (Extreme Gradient Boosting) algorithm. The predictive model, validated through Monte Carlo simulations, demonstrates measured stability across perturbation scenarios. Distribution analysis confirms appropriate parameter bounds, while error analysis demonstrates consistent pattern preservation across simulation scenarios. The study quantifies the relative influences of environmental factors, particularly the interplay between temperature, irradiance, and humidity (correlations ranging from −0.33 to 0.36). These findings provide insights for system operation while acknowledging the complex, often weak coupling between environmental parameters. Seasonal performance analysis reveals distinct optimization windows, with the Post-Rainy season showing the highest stability (PR: 0.986 ± 0.082) and optimal enhancement potential. Sensitivity analysis identifies critical operational thresholds, including performance transitions at 80 % relative humidity and optimal temperature ranges below 32 °C, where each 1 °C reduction yields 0.45 % efficiency gain. The study establishes specific optimization strategies including automated cleaning systems triggered at 85 % peak irradiance, yielding 2.5 % efficiency improvement, and enhanced inverter response protocols during peak generation periods, achieving a 3.2 % performance gain. These findings inform practical implementation frameworks for performance optimization, contributing to improved energy generation efficiency and system reliability.

Suggested Citation

  • Gawusu, Sidique & Zhang, Xiaobing & Yakubu, Sufyan & Debrah, Seth Kofi & Das, Oisik & Bundela, Nishant Singh, 2025. "Optimizing solar photovoltaic system performance: Insights and strategies for enhanced efficiency," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007418
    DOI: 10.1016/j.energy.2025.135099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.