IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006735.html
   My bibliography  Save this article

Enhanced load forecasting for distributed multi-energy system: A stacking ensemble learning method with deep reinforcement learning and model fusion

Author

Listed:
  • Ren, Xiaoxiao
  • Tian, Xin
  • Wang, Kai
  • Yang, Sifan
  • Chen, Weixiong
  • Wang, Jinshi

Abstract

Accurate multi-energy load forecasting for distributed multi-energy systems is facing challenges due to the complexity of multi-energy coupling and the inherent stochasticity. In this regard, a novel stacking ensemble learning model based on reinforcement learning (RL) and model fusion is proposed. First, feature selection is performed using the maximal information coefficient (MIC), load data is decomposed and reconstructed through the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and sample entropy (SE). Subsequently, the fused models with strong predictive capabilities are selected as base learners, and the RL based on deep deterministic policy gradient (DDPG) with excellent adaptive learning ability is selected as meta-learner. Next, the hyperparameters of the base learners are optimized using an improved arctic puffin optimization (APO) algorithm. To reduce overfitting and improve the generalization ability of the model, k-fold cross-validation is adopted to construct the model. Tests on real-world datasets demonstrate that the proposed method achieves smaller prediction errors, enhanced robustness and reliability. Moreover, through careful base learner selection and the utilization of RL as the meta-learner, the model achieves up to a 1.53 % improvement in coefficient of determination, a 36.09 % increase in residual prediction deviation, and a 102.96 % reduction in rooted mean square error.

Suggested Citation

  • Ren, Xiaoxiao & Tian, Xin & Wang, Kai & Yang, Sifan & Chen, Weixiong & Wang, Jinshi, 2025. "Enhanced load forecasting for distributed multi-energy system: A stacking ensemble learning method with deep reinforcement learning and model fusion," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006735
    DOI: 10.1016/j.energy.2025.135031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.