IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006139.html
   My bibliography  Save this article

Comprehensive multi-performance research of hydrogen-fueled Wankel rotary engine by experimental and data-driven methods

Author

Listed:
  • Meng, Hao
  • Zhan, Qiang
  • Ji, Changwei
  • Yang, Jinxin
  • Wang, Shuofeng

Abstract

Hydrogen-fueled Wankel rotary engine has attracted widespread interest due to its high power and eco-friendly emissions. To further promote its development, the present work investigates the comprehensive performance of hydrogen-fueled Wankel rotary engines by experimental and data-driven methods. The main conclusions are as follows: Within the test range (1000–3000 r/min and 1.0 to 3.0 excess air ratio) qualitative control hydrogen-fueled Wankel rotary engine achieve maximum torque and brake thermal efficiency of 117.4 N m and 36.2 % at 3000 r/min, respectively. And the best brake thermal efficiency at each engine speed usually corresponds to 1.8 excess air ratio. In particular, comparing this work to previous work, hydrogen-fueled Wankel rotary engines and piston engines have different efficiency characteristics. In addition, qualitative control can effectively inhibit the NO emission and knock. NO emission can be negligible for each engine speed when excess air ratios exceed 2. In particular, based on the 3–20 kHz band-pass filter, 0.1 bar knock intensity can be considered as the knock occurrence threshold in the hydrogen-fueled Wankel rotary engine. There is a close correlation between the knock according to that threshold determination and NO emission, which can be used to simply the prediction model and facilitate the supervision of the electronic control unit. Among various Machine Learning methods, support vector machine with radial basis function kernel function has the best global prediction ability of torque, efficiency, NO emission and knock level.

Suggested Citation

  • Meng, Hao & Zhan, Qiang & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng, 2025. "Comprehensive multi-performance research of hydrogen-fueled Wankel rotary engine by experimental and data-driven methods," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006139
    DOI: 10.1016/j.energy.2025.134971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.