IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225005353.html
   My bibliography  Save this article

Conversion of lignin with polystyrene into high-value aromatics through co-pyrolysis and post-plasma refining

Author

Listed:
  • Fan, Yongsheng
  • Qin, Changsheng
  • Zhao, Keyu
  • Xiong, Yonglian
  • Shi, Yunxi

Abstract

Lignin was co-pyrolyzed with polystyrene to subject volatiles to post-plasma refining for potential aromatic production, mainly focusing on effects of blend ratio and plasma parameters. Firstly, the co-pyrolysis at equal mass ratio was beneficial for reducing residual char and reaction energy barrier. Secondly, elevating polystyrene blend ratio could improve oil yield, fuel-grade, and aromatic selectivity, but the improvement was compromised, showing volatiles synergy and plasma excitation were more favorable at a balanced ratio, because the H-donation of polystyrene and the bond-cleavage ability of lignin-derived oxyradicals were fully utilized. Thirdly, increasing plasma current enhanced plasma emission spectra, meaning more energetic reactive species, while extending discharge length had a little effect on the spectra, but doubling the discharge length had a more obvious refining effect than increasing the discharge current by equal steps. Fourthly, increased plasma parameters contributed to the breakage of bridged bonds between benzene rings and the loss of aliphatic side-chains, deepening deoxygenation, lowing molecular weight, and raising aromatic proton ratio. However, higher plasma current mainly weakened the selectivity of monocyclic aromatics, and higher discharge length severely decreased the aromatic yield. Therefore, this study suggested the possibility of using non-catalytic methods to recover high-value aromatics from lignin and polystyrene.

Suggested Citation

  • Fan, Yongsheng & Qin, Changsheng & Zhao, Keyu & Xiong, Yonglian & Shi, Yunxi, 2025. "Conversion of lignin with polystyrene into high-value aromatics through co-pyrolysis and post-plasma refining," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005353
    DOI: 10.1016/j.energy.2025.134893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.