IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004530.html
   My bibliography  Save this article

Effect of ignition timing on engine performance of a linear range extender: An experimental study fueled with methanol

Author

Listed:
  • Liu, Chang
  • Zou, Run
  • Hu, Xiaoxu
  • Wei, Shuojian
  • Wei, Yidi
  • Jia, Boru
  • Zuo, Zhengxing
  • Wang, Wei
  • Feng, Huihua

Abstract

The Free Piston Engine Generator (FPEG), as a linear range extender, offers advantages such as adjustable compression ratios and multi-fuel adaptability. The application and promotion of methanol fuel and lean combustion technology contribute to achieving low-carbon and high-efficiency power systems. This study achieved stable operation of methanol fuel in FPEG under lean-burn conditions. Through experimental research, the effects of ignition timing under different load conditions on the combustion process, performance, and cyclic variation of FPEG were explored. The results show that adjusting ignition timing effectively regulates the peak magnitude and phase of in-cylinder pressure and heat release rate during methanol lean combustion in FPEG. When the ignition timing is set to ig24mm, thermal efficiency, power output, and IMEP reach optimal levels. Compared with traditional internal combustion engines and FPEG under stoichiometric conditions, the optimal ignition timing for methanol FPEG under lean-burn conditions is more advanced. Increasing intake flow rate accelerates combustion speed and enhances engine power but reduces thermal efficiency. When the intake flow rate increases from 250 L/min to 350 L/min, Indicated power increases by 20.8 %, while thermal efficiency decreases by 11.6 %. Both advancing ignition timing and increasing intake flow rate enhance combustion stability, thereby reducing cyclic combustion variation. When the ignition timing is 24 mm and the intake flow rate is 350 L/min, the corresponding COV-IMEP is 2.73 %, while it is 5.73 % at an intake flow rate of 250 L/min.

Suggested Citation

  • Liu, Chang & Zou, Run & Hu, Xiaoxu & Wei, Shuojian & Wei, Yidi & Jia, Boru & Zuo, Zhengxing & Wang, Wei & Feng, Huihua, 2025. "Effect of ignition timing on engine performance of a linear range extender: An experimental study fueled with methanol," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004530
    DOI: 10.1016/j.energy.2025.134811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.