Author
Listed:
- Fan, Kai
- Chen, Yao
- Lai, Changzhi
- Cai, Qilin
- Wu, Xi
Abstract
It is necessary to conduct a regular commissioning of purification ventilation systems to prevent issues such as filter clogging and imbalances in airflow to maintain optimal energy efficiency. This process should be performed at least once every three months, or after each switchover in on-duty cleanrooms. However, the traditional method consisting of testing, adjusting, and balancing (TAB) is time-consuming and inefficient, leading to a significant challenge for multi-area cleanrooms where airflow from neighboring rooms interferes with each other. To improve commissioning and energy efficiency, a comprehensive experimental platform with full airflow was specifically developed in this study to support key operational data. By leveraging the experimental platform to gather data, a multi-zone cleanroom ventilation steady-state prediction model (MCV-SPM) was developed, capitalizing on the multi-dimensional data-sharing capacity with the assistance of the multi-task learning (MTL) framework. Compared with traditional single-task models, this MTL-based model integrates two types of tasks, air balance and differential pressure control, using a shared bottom layer structure, which realizes cross-task information sharing and knowledge transfer, and improves the model's prediction accuracy and operation efficiency. Furthermore, a predict-then-optimize (PTO) control strategy is employed, where an optimization algorithm iteratively refines control parameters based on the MTL model's predictions. The mean error in the prediction of airflow for this system is only 1.8%, while the mean error in differential pressure is as low as 1.8 Pa, representing a notable enhancement over the 5.3% and 8 Pa of the existing methodology. Then, the proposed post-prediction optimal control strategy requires only 3% of the manual commissioning time (17.21 s) to reduce the average fan frequency by 7.5%, which corresponds to an estimated energy savings of 20.9%. This study presents a novel approach to improving the intelligent and efficient operation of purifying ventilation systems. The experimental platform utilized in the study adheres to the standards set forth for pharmaceutical cleanrooms. Further research may be directed towards the improvement of real-world data validation, the expansion of training datasets, and the investigation of the model's applicability across a range of industrial contexts.
Suggested Citation
Fan, Kai & Chen, Yao & Lai, Changzhi & Cai, Qilin & Wu, Xi, 2025.
"Energy-saving control of multi-zone purification ventilation system based on a novel multi-task learning framework,"
Energy, Elsevier, vol. 317(C).
Handle:
RePEc:eee:energy:v:317:y:2025:i:c:s036054422500386x
DOI: 10.1016/j.energy.2025.134744
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s036054422500386x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.