IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics0360544225003585.html
   My bibliography  Save this article

Impact of working fluid filling ratio on the performance of a micro-channel loop heat pipe based solar PV/T heat and power system

Author

Listed:
  • Yu, Min
  • Zhu, Xiaoling
  • Li, Mingjun
  • Zhao, Xudong
  • Yuan, Yanping

Abstract

The working fluid filling-ratio (FR) has a significant impact on the heat output of a loop heat pipe (LHP); a lower FR may lead to a faster dry-out of the LHP resulting in a reduced heat transport capacity, while a higher FR may lead to the over-charging of the working fluid, resulting in the less available evaporation surface and reduced heat transport capacity. This paper presented an experimental investigation into the impact of FR on the performance of a unique loop heat pipe (LHP) and associated PV/T system. This LHP, with a unique liquid upper-feeding header and a novel micro-channel evaporating pipes array, can effectively distribute the working fluid across the side wall of the evaporator and thus realize higher heat capacity. The thermal characteristics tests were carried out in an indoor (laboratory) space, with 4 filling mass values (0.8 kg, 0.9 kg, 1.0 kg, 1.1 kg, i.e. FR of 52.6 %, 59.2 %, 65.8 %, 72.3 %). The experimental results showed that the heat capacity and solar thermal efficiency had a same trend changing with filling mass, and the suggested optimal FR of this unique LHP should be around 59.2 % under the pre-set operational condition. While the highest value of heat capacity and solar thermal efficiency are 712.83W and 67.68 % at this optimal FR of 59.2 %. This research will contribute to wide deployment of the novel LHP PV/T system, thus leading to significant fossil fuel energy saving and carbon emission reduction on the global context.

Suggested Citation

  • Yu, Min & Zhu, Xiaoling & Li, Mingjun & Zhao, Xudong & Yuan, Yanping, 2025. "Impact of working fluid filling ratio on the performance of a micro-channel loop heat pipe based solar PV/T heat and power system," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003585
    DOI: 10.1016/j.energy.2025.134716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.