IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v317y2025ics0360544225002440.html
   My bibliography  Save this article

System-level techno-economic comparison of residential low-carbon heating and cooling solutions

Author

Listed:
  • Aunedi, Marko
  • Olympios, Andreas V.
  • Pantaleo, Antonio M.
  • Mersch, Matthias
  • Markides, Christos N.

Abstract

This paper studies portfolios of electricity- and hydrogen-driven heat pumps, electricity- and hydrogen-driven boilers and thermal energy storage technologies from an energy system perspective. Thermodynamic and component-costing models of heating and cooling technologies are integrated into a whole-energy system cost optimisation model to determine configurations of heating and cooling systems that minimise the overall system cost. Case studies focus on two archetypal systems (North and South) that differ in terms of heating and cooling demand and availability profiles of solar and wind generation. Modelling results suggest that optimal capacities for heating and cooling technologies vary significantly depending on system properties. Between 83 % and 100 % of low-carbon heat is supplied by electric heat pump technologies, with the rest contributed by electric or hydrogen boilers, supplemented by heat storage. Air-to-air electric heat pumps emerge as a significant contributor to both heating and cooling, although their contribution may be constrained by the compatibility with existing heating systems and the inability to provide hot water. Nevertheless, they are found to be a useful supplementary source of space heating that can displace between 20 and 33 GWth of other heating technologies compared to the case where they do not contribute to space heating.

Suggested Citation

  • Aunedi, Marko & Olympios, Andreas V. & Pantaleo, Antonio M. & Mersch, Matthias & Markides, Christos N., 2025. "System-level techno-economic comparison of residential low-carbon heating and cooling solutions," Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002440
    DOI: 10.1016/j.energy.2025.134602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225002440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.