IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225001525.html
   My bibliography  Save this article

Research on the performance of heat pump drying system with rock thermal energy storage

Author

Listed:
  • Guan, Xiaokang
  • Wang, Yunfeng
  • Li, Ming
  • Li, Aimin
  • Zhou, Xiaoyan
  • Yang, Jie
  • Liang, Zhongwei

Abstract

Heat pump drying systems are widely used in agriculture due to their high energy efficiency and cost-saving potential. This study develops a novel heat pump drying system integrated with a rock thermal energy storage bed to reduce energy consumption and enhance waste heat utilization. The system utilizes cost-effective and widely available rock materials (specific heat capacity of 2025 kJ/m³·K) that exhibit high thermal capacity, excellent durability, and low thermal expansion. These properties contribute to long-term stability and lower maintenance costs. The system was evaluated under three drying modes: intermittent, delayed-intermittent, and continuous. The experimental data were processed using thermodynamic analysis methods, and the energy performance of each mode was evaluated through regression fitting models. Compared to continuous mode, SEC decreased by 11.98 % and 25.71 % in the intermittent and delayed intermittent modes. Correspondingly, total electricity consumption was reduced by 12.37 % and 26.51 %, and COP increased by 13.71 % and 11.60 %. Additionally, annual CO2 emissions were reduced by 11.17 % and 24.67 %. In delayed intermittent mode, extending the charging period improved thermal efficiency by 24.6 % and exergy efficiency by 9.97 %. These results demonstrate the benefits of integrating intermittent drying with rock thermal storage in improving energy efficiency and reducing environmental impact.

Suggested Citation

  • Guan, Xiaokang & Wang, Yunfeng & Li, Ming & Li, Aimin & Zhou, Xiaoyan & Yang, Jie & Liang, Zhongwei, 2025. "Research on the performance of heat pump drying system with rock thermal energy storage," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001525
    DOI: 10.1016/j.energy.2025.134510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.