IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225001501.html
   My bibliography  Save this article

Data-driven approach to estimate urban heat island impacts on building energy consumption

Author

Listed:
  • Tehrani, Alireza Attarhay
  • Sobhaninia, Saeideh
  • Nikookar, Niloofar
  • Levinson, Ronnen
  • Sailor, David J.
  • Amaripadath, Deepak

Abstract

Urban heat island effects can significantly increase building energy consumption. Assessing the impact of the urban heat island on building energy use is challenging due to temperature variations. Scalable building models and cooling energy consumption data are essential for accurate load demand predictions. This paper presents a data-driven method to predict cooling load intensity (heat removed per unit floor area to maintain the setpoint in conditioned spaces), under urban heat island conditions in residential buildings in Phoenix, Arizona, using a synthetic dataset of 27,681 buildings. The approach incorporates physics-based parametric modeling using building geometrical features, urban heat island intensity simulation through the Urban Weather Generator, and cooling load intensity estimation via EnergyPlus and OpenStudio. Machine learning models, including Extreme Gradient Boosting, Gaussian Process Regression, Random Forest, Support Vector Regression, and Deep Neural Networks, are employed for cooling load predictions. Urban building energy performance analysis indicates that the Deep Neural Network model performs best in estimating cooling load intensity, achieving a high coefficient of determination of 0.98. These findings support informed decision-making to enhance building energy efficiency, reduce consumption, and facilitate large-scale smart city planning.

Suggested Citation

  • Tehrani, Alireza Attarhay & Sobhaninia, Saeideh & Nikookar, Niloofar & Levinson, Ronnen & Sailor, David J. & Amaripadath, Deepak, 2025. "Data-driven approach to estimate urban heat island impacts on building energy consumption," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001501
    DOI: 10.1016/j.energy.2025.134508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.