IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544224040957.html
   My bibliography  Save this article

Recurrent attention encoder–decoder network for multi-step interval wind power prediction

Author

Listed:
  • Ye, Xiaoling
  • Liu, Chengcheng
  • Xiong, Xiong
  • Qi, Yinyi

Abstract

In the context of large-scale wind power grid integration, accurate wind power forecasting is crucial for optimizing grid scheduling and ensuring safe grid connection. This study proposes a recurrent attention encoder–decoder network for multi-step interval wind power forecasting, combining Numerical Weather Prediction (NWP) inputs with deep learning techniques. The approach leverages a sequence-to-sequence neural network and temporal attention mechanism, enabling better capture of latent patterns in historical data that are useful for future predictions, directly generating multi-step time series and final prediction intervals. Additionally, a moving window training scheme, integrating bifurcated sequences and hidden layers, is employed to organize historical data and improve the stability and performance of the sequence. Using offshore wind farm data, the wind speed and direction components (U, V) are decomposed, and experiments show that the proposed method outperforms existing methods in metrics such as a minimum PINAW of 0.119 and an average reduction of 19.37% in CWC. These results demonstrate high accuracy and reliability in interval forecasting, providing strong support for wind farm scheduling and grid optimization.

Suggested Citation

  • Ye, Xiaoling & Liu, Chengcheng & Xiong, Xiong & Qi, Yinyi, 2025. "Recurrent attention encoder–decoder network for multi-step interval wind power prediction," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544224040957
    DOI: 10.1016/j.energy.2024.134317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544224040957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.