IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224041239.html
   My bibliography  Save this article

A feature prediction-based method for energy consumption prediction of electric buses

Author

Listed:
  • Zhang, Zhaosheng
  • Wang, Shuai
  • Ye, Baolin
  • Ma, Yucheng

Abstract

Due to environmental concerns, electric buses (EBs) are becoming increasingly popular. Predicting the energy consumption of EBs is crucial for the operational management of bus fleets and the development of related infrastructure. This paper proposed a novel method for energy consumption prediction. Firstly, real-world data of 30 EBs covering a time span over one year from 3 bus routes was collected and the features that influence the energy consumption of EBs were selected and analysed. Then, these features were categorized into two groups: directly obtainable and indirectly obtainable, and models were built to predict the latter. Finally, the predicted features were combined with the directly obtainable ones to train an energy consumption prediction model based on Convolutional Neural Network (CNN). Cross validation was applied to evaluate the energy consumption prediction method, which achieved a mean average absolute percentage error (MAPE) of 8.13 %, surpassing other existing researches.

Suggested Citation

  • Zhang, Zhaosheng & Wang, Shuai & Ye, Baolin & Ma, Yucheng, 2025. "A feature prediction-based method for energy consumption prediction of electric buses," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224041239
    DOI: 10.1016/j.energy.2024.134345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224041239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224041239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.