IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224040222.html
   My bibliography  Save this article

Experimental research on the effect of diesel post-injection conditions on the efficiency and global warming potential in a single-cylinder four-stroke marine engine fueled with ammonia and diesel

Author

Listed:
  • Lee, Jeongwoo
  • Park, Cheolwoong
  • Jang, Ilpum
  • Kim, Minki
  • Park, Gyeongtae
  • Kim, Yongrae

Abstract

Ammonia is one of the most widely used carbon-neutral fuels; therefore, many efforts have been made to supply ammonia to dual fuel (DF) marine engines. Because ammonia is toxic, the amount of unburned ammonia in exhaust gas should be reduced. However, as ammonia does not easily combust, it is necessary to oxidize the unburned substances in the latter part of the main combustion process. Thus, diesel post-injection is required to oxidize the unburned emissions. In this study, the effects of diesel post-injection timing and amount on the combustion, emissions, and efficiency of ammonia-diesel DF four-stroke 12-L single-cylinder marine engine were experimentally evaluated under 900 rpm and 50 % load conditions. Post-injection timing varied from 35° to 95° after the start of a micro pilot (MP). The amount of post-injection was maintained at 25 % and 40 % of total injected diesel fuel. Consequently, conducting a diesel post-injection at a level of 40 % close to the MP injection enabled the reduction of unburned hydrocarbon by 18.9 %, unburned ammonia by 11.2 % and N₂O—a major greenhouse gas—by 19.4 % compared to conventional dual-fuel combustion while maintaining equivalent thermal efficiency.

Suggested Citation

  • Lee, Jeongwoo & Park, Cheolwoong & Jang, Ilpum & Kim, Minki & Park, Gyeongtae & Kim, Yongrae, 2025. "Experimental research on the effect of diesel post-injection conditions on the efficiency and global warming potential in a single-cylinder four-stroke marine engine fueled with ammonia and diesel," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040222
    DOI: 10.1016/j.energy.2024.134244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.