IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224039057.html
   My bibliography  Save this article

Experimental study on heat transfer characteristics between high-pressure air and molten salt used in solar-aided compressed air energy storage systems

Author

Listed:
  • Zhou, Yufei
  • Zhang, Hanfei
  • Liu, Shuo
  • Lu, Ziyi
  • Ding, Xingqi
  • Duan, Liqiang
  • Desideri, Umberto

Abstract

To establish a zero-emission, efficient, and reliable compressed air energy storage (CAES) system to support the large-scale integration of renewable energy into the grid, many studies are integrating concentrated solar power with the CAES, forming solar-aided compressed air energy storage (SA-CAES) systems. However, current integration schemes remain at the theoretical research stage. Furthermore, the heat transfer performance of the high-pressure air when exchanging heat with solar heat transfer fluids involved in the discharging process of the SA-CAES system has not been revealed by existing related experimental studies. Therefore, this paper designs a shell-and-tube heat exchanger and establishes a high-pressure air production system and a molten salt circulation system, to investigate the heat transfer performance of the high-pressure air inside the tubes. The novelty of this experiment lies in increasing the air-side pressure up to 5 MPa and proposing new air-side heat transfer correlations at high pressures, which provides important support for SA-CAES systems. The results indicate that the Reynolds number of air is the primary factor affecting heat transfer capability, higher Reynolds numbers result in better heat transfer rate and Nusselt number. An increase in air pressure has a minor negative impact on the heat transfer. In the turbulent region, the Gnielinski correlation still provides good predictive results, with a maximum deviation of 23 % within the experimental range. Whereas the Hansen correlation underpredicts the Nusselt number on the air side. New heat transfer correlations for high-pressure air have been established for both laminar and turbulent regions, showing prediction errors within ±10 % compared to experimental data, demonstrating high predictive accuracy.

Suggested Citation

  • Zhou, Yufei & Zhang, Hanfei & Liu, Shuo & Lu, Ziyi & Ding, Xingqi & Duan, Liqiang & Desideri, Umberto, 2024. "Experimental study on heat transfer characteristics between high-pressure air and molten salt used in solar-aided compressed air energy storage systems," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224039057
    DOI: 10.1016/j.energy.2024.134127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224039057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224039057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.