IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224038520.html
   My bibliography  Save this article

Thermodynamics-based data-driven combustion modelling for modern spark-ignition engines

Author

Listed:
  • Yuan, Hao
  • Goyal, Harsh
  • Islam, Reza
  • Giles, Karl
  • Howson, Simeon
  • Lewis, Andrew
  • Parsons, Dom
  • Esposito, Stefania
  • Akehurst, Sam
  • Jones, Peter
  • McAllister, Matthew
  • Littlefair, Bryn
  • Lu, Zhewen
  • Zhu, Sipeng

Abstract

Combustion modelling is complicated, computationally expensive, and crucial for the development of modern spark-ignition (SI) engines. This study introduces a novel data-driven approach to improve the predictability of phenomenological SI engine models. First, a physics-based model is used to generate Mass Fraction Burned (MFB) profiles for 1258 precisely controlled knock-limited combustion experiments. To predict these MFB profiles based on the operating conditions, Artificial Neural Networks (ANN), Multiple Output Support Vector Regression (MOSVR), and Multivariate Gaussian Process (MGP) are then applied. Among these, MGP demonstrates superior performance due to the Gaussian-like distribution of the outputs. Further sensitivity analysis using MGP identifies critical inputs that are not engine specific to develop a thermodynamics-based data-driven model. The model demonstrates high accuracy, uses normalised inputs that are independent of engine geometry, and consistently performs well with small datasets. When applied to a different but similarly sized engine, the model accurately predicts the knock-limited spark timing and captures the MFB profile relatively well, showing strong generalisability. This study not only improves the predictability of engine combustion simulations but also establishes a valuable dataset for further development of data-driven models in different engines.

Suggested Citation

  • Yuan, Hao & Goyal, Harsh & Islam, Reza & Giles, Karl & Howson, Simeon & Lewis, Andrew & Parsons, Dom & Esposito, Stefania & Akehurst, Sam & Jones, Peter & McAllister, Matthew & Littlefair, Bryn & Lu, , 2024. "Thermodynamics-based data-driven combustion modelling for modern spark-ignition engines," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038520
    DOI: 10.1016/j.energy.2024.134074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.