IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics036054422403771x.html
   My bibliography  Save this article

Multi-cycle charging information guided state of health estimation for lithium-ion batteries based on pre-trained large language model

Author

Listed:
  • Zhang, Zhen
  • Zhu, Yuhao
  • Zhang, Qi
  • Cui, Naxin
  • Shang, Yunlong

Abstract

Continuous, stable, and accurate state of health (SOH) estimation is essential for the sustainable and reliable operation of lithium-ion batteries. However, conventional definitions and mainstream estimation methods encounter challenges in efficient implementation subject to rigorous feature engineering and complex engineering conditions. In this work, we explore feature combinations from multi-cycle charging information and employ a pre-trained large language model (PLM), which is prominent in natural language processing, for state estimation. Firstly, voltage-charge capacity curves are constructed by directly measurable data to identify candidate features across various fragmented charging processes. Posteriorly, considering the short-term stability of SOH, this paper proposes feature combinations from multi-cycle charging information to enhance the flexibility of feature engineering. Thereafter, we fine-tune the PLM to adapt to specific regression tasks, balancing prior knowledge and training efficiency. Compared to old-fashioned degradation features, the integrated multi-cycle feature combination does not require stringent prerequisites and exhibits exceptional correlation. Supplemented with GridSearch and large datasets, the proposed estimation method presents superior performance compared to other algorithms, achieving an optimal RMSE of only 0.0054. This work highlights the potential of fine-tuning the PLM for battery state estimation, leveraging innovative feature engineering technology.

Suggested Citation

  • Zhang, Zhen & Zhu, Yuhao & Zhang, Qi & Cui, Naxin & Shang, Yunlong, 2024. "Multi-cycle charging information guided state of health estimation for lithium-ion batteries based on pre-trained large language model," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403771x
    DOI: 10.1016/j.energy.2024.133993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403771X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403771x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.