IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics036054422403768x.html
   My bibliography  Save this article

An explicit State-of-Charge planning solution for plug-in hybrid electric vehicle based on low-granularity prior-knowledge

Author

Listed:
  • Cai, Xuan
  • Zhou, Wei
  • Cui, Zhiyong
  • Bai, Xuesong
  • Liu, Fan
  • Yu, Haiyang
  • Ren, Yilong

Abstract

The intervention of batteries in hybrid electric vehicles, when paired with an effective Energy Management Strategy (EMS), substantially improves fuel efficiency and reduces emissions in comparison to conventional internal combustion engine vehicles. The evolution of Intelligent Transportation Systems (ITS) has facilitated the possibility of predictive energy management (PEM) predicated on State-of-Charge (SoC) planning. Nevertheless, prevalent methodologies frequently encounter challenges in balancing optimization with real-time applicability. To address these limitations, we have devised an explicit SoC planning method that necessitates sparse traffic prior-knowledge, drawing inspiration from the optimal charge depletion behavior. This innovative method strategically determines the average SoC depletion rate for each anticipated driving road segment by integrating theoretical predictions of optimal depletion rate with experienced constraints. Capitalizing on prior knowledge of sparse traffic velocities and road grades, we have developed a hierarchical PEM framework that seamlessly integrates SoC planning — power split. The results of the simulation experiments reveal that the SoC trajectories and fuel consumption generated by this method are in close approximation to theoretically optimal benchmarks. Furthermore, the computational time of this method is in accordance with the demanding real-time requisites of onboard units even if hundreds of miles. Notably, this approach exhibits an enhanced robustness to predictive discrepancies, ensuring reliability and efficacy in dynamic driving cycles.

Suggested Citation

  • Cai, Xuan & Zhou, Wei & Cui, Zhiyong & Bai, Xuesong & Liu, Fan & Yu, Haiyang & Ren, Yilong, 2024. "An explicit State-of-Charge planning solution for plug-in hybrid electric vehicle based on low-granularity prior-knowledge," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403768x
    DOI: 10.1016/j.energy.2024.133990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403768X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403768x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.