IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037502.html
   My bibliography  Save this article

The implications of circular economy strategies on the future energy transition technologies and their impacts: Solar PV as a case study

Author

Listed:
  • Hu, Xueyue
  • Elshkaki, Ayman
  • Shen, Lei

Abstract

Solar photovoltaics (PV) is expected to play a major role in global energy transition under the International Energy Agency Sustainable Development scenario (IEA-SD) to achieve the temperature goals of the Paris Agreement. However, its large-scale deployment will inevitably increase material demand and associated CO2 emissions. From a material-energy-carbon nexus perspective, this study assesses the effectiveness of various circular economy strategies and combinations in reducing material demand and mitigating carbon. This study is the first to explicitly explore the contradictions among reduce, reuse, recycle strategy combinations when addressing multiple sustainability objectives for different metal categories. A comprehensive analysis is conducted via dynamic material flow analysis and scenario analysis, covering four major metals (Al, Cu, Ni, Pb) and seven minor metals (Ag, Cd, Ga, Ge, In, Se, Te) used in four solar PV sub-technologies (c-Si, a-Si, CdTe, CIGS) at a global level for the period 2015 to 2050. Findings show that reduce & recycle combined can reduce cumulative Te demand to 100 % of available resources, and cut CO2 emissions for Ag by 94 %. However, when reuse is also applied, no further reductions in material demand are achieved, and cuts in CO2 emissions decrease to 92.5 %. Whereas for major metals, reuse & recycle combined achieve the highest cuts in CO2 emissions at 23.1 %, with recycle only accounting for 4.4 % of this cut. These results challenge the conventional wisdom of applying a universal set of circular economy strategies, implying that circular economy strategies should be selectively implemented based on specific sustainability objectives and target materials.

Suggested Citation

  • Hu, Xueyue & Elshkaki, Ayman & Shen, Lei, 2024. "The implications of circular economy strategies on the future energy transition technologies and their impacts: Solar PV as a case study," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037502
    DOI: 10.1016/j.energy.2024.133972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.