IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037459.html
   My bibliography  Save this article

Decoupling control of core power and axial power distribution for large pressurized water reactors based on reinforcement learning

Author

Listed:
  • Wang, Pengfei
  • Liang, Wenlong
  • Gong, Huijun
  • Chen, Jie

Abstract

The automatic control of core power and axial power distribution in large pressurized water reactors (PWRs) is crucial for reactor safety, which can be realized by the Mechanical Shim (MSHIM) control strategy. However, this strategy suffers from strong coupling between the regulations of reactor power and axial offset (AO), and the decoupling control between them is expected. This paper proposes a decoupling MSHIM control strategy for large PWRs based on reinforcement learning (RL). Two feedforward RL-agents are designed to compensate for the speeds of two independent control rod banks determined by the MSHIM control system. Thus, coupling effects between them can be eliminated when regulating the reactor power and AO. Simulation results of the AP1000 reactor under typical operational transients show that the RL-based decoupling MSHIM control strategy can provide tighter AO control than both the original and a conventional feedforward decoupling MSHIM control strategies with little or no compromise in reactor power control. The mean absolute percentage error and maximum absolute error of AO can be reduced by up to 99.7 % and 94.9 %, respectively, compared with the original strategy. This study provides an effective solution for decoupling core power and AO control in large PWRs under MSHIM control strategy.

Suggested Citation

  • Wang, Pengfei & Liang, Wenlong & Gong, Huijun & Chen, Jie, 2024. "Decoupling control of core power and axial power distribution for large pressurized water reactors based on reinforcement learning," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037459
    DOI: 10.1016/j.energy.2024.133967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.