IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037186.html
   My bibliography  Save this article

Joint estimation of SOC and peak power capability for series reused battery pack based on screening process method

Author

Listed:
  • Zhang, Yujie
  • Liu, Baicheng
  • Zhang, Hongguang
  • Kuang, Rao
  • Xu, Yonghong
  • Zhang, Jian
  • Yang, Fubin
  • Wang, Shuo

Abstract

Lithium-ion battery disposal is becoming an increasingly important issue with the rapid growth of Electric Vehicles (EVs) regarding resource conservation and environmental sustainability. It is considered the most suitable solution to reuse rather than dispose of retired batteries. However, the precision in estimating the battery states is of great importance to ensure the operational safety and efficiency of reused battery packs. This study proposes a joint estimation method to predict the State of Charge (SOC) and the peak power capability for reused battery packs considering inconsistency. The primary content of this work is described as follows. (1) This paper designs an improved screening method for evaluating the consistency of the reused batteries that are used to connect to the series battery pack. (2) A second-order RC model is selected as the cell mean model (CMM) to represent the overall performance of the reused battery pack. On this basis, the mean SOC is estimated by using Sage-Husa adaptive algorithm and extended Kalman filter (SH-AEKF), whereas the peak power capability is evaluated by considering multiple limitations. (3) An experiment is conducted to evaluate the robustness of the joint estimation method. The results show that the maximum absolute error of SOC estimation is below ±3 % while the mean absolute percentage error (MAPE) of peak power capability estimation could be limited to less than 3.5 %. This study indicates the high accuracy and reliability of the proposed joint estimation method for retired battery packs.

Suggested Citation

  • Zhang, Yujie & Liu, Baicheng & Zhang, Hongguang & Kuang, Rao & Xu, Yonghong & Zhang, Jian & Yang, Fubin & Wang, Shuo, 2024. "Joint estimation of SOC and peak power capability for series reused battery pack based on screening process method," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037186
    DOI: 10.1016/j.energy.2024.133940
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.