IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036971.html
   My bibliography  Save this article

Numerical study on the performance of a new integrated afterburner under a wide range of bypass ratio conditions

Author

Listed:
  • Li, Minqiang
  • Wang, Zhiwu
  • Li, Junlin

Abstract

To improve the performance of the afterburner under a wide range of bypass ratio conditions, a new afterburner integrated with a mixer and a strut flameholder was proposed in this paper. The dry and thermal-state performance of the afterburner under different bypass ratio conditions were studied through numerical simulation with RANS CFD. The results showed that the mixing forms changed as bypass ratio increased. The integrated afterburner primarily achieved mixing by forming a recirculation region at the wake of the strut flameholder. As the bypass ratio increased, more vortices shed at the wake of the strut, increasing turbulent kinetic energy in the downstream area. This enhanced mixing between the inner and bypass gas flows, improved the thermal mixing performance, and increased total pressure loss. In the range of bypass ratio from 0.1 to 0.9, the mixing performance of the afterburner and total pressure loss both gradually increased with the increase of bypass ratio. When the bypass ratio was 0.55, the total pressure recovery coefficient was still more than 0.90, and the mixing performance reached 0.94. Following the rise in bypass ratio, the air from the mixer outlet in the integrated afterburner increased the oxygen content at the end of the strut, in the inclined cavity, near the center cone, and in the area of the wall flameholder, allowing more fuel to participate in combustion and thus improving combustion efficiency. When the bypass ratio was 0.50, the combustion efficiency was up to 0.954. However, as the bypass ratio continued to increase, the cold air from the mixer outlet impacted the pilot flame at the wake of the strut flameholder, reducing the degree of combustion reaction in the region and reducing the combustion efficiency.

Suggested Citation

  • Li, Minqiang & Wang, Zhiwu & Li, Junlin, 2024. "Numerical study on the performance of a new integrated afterburner under a wide range of bypass ratio conditions," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036971
    DOI: 10.1016/j.energy.2024.133919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.