Author
Listed:
- Lataoui, Zied
- Benselama, Adel M.
Abstract
A CFD model is developed to simulate the heat and mass transfer inside a two-phase closed thermosyphon. Based on the “volume of fluid” method, governing equations are solved using the OpenFOAM utilities. The involved complex phenomena like evaporation and condensation occurring in such a device and associated with two-phase flow are investigated. A noticeable novelty of this model is that neither artificial, ad hoc nor specific nucleation means is needed to trigger evaporation along the heat source walls; an altogether unique phase change model is valid and uniformly used within the flow occurring inside the thermosyphon. The numerical results are compared to well-documented experimental data showing very good agreement: maximum deviation of 1 % and 2.7 % are obtained for mean temperature and condenser pressure, respectively. The axial thermal resistance values are also compared with the experimental data. Fair agreement was obtained in the overall equivalent resistance (26.4–32.5 %) and in the evaporator axial resistance (25–27.5 %). In addition, the evaporator slug flow pattern is successfully captured by the model. The liquid fraction distribution inside the thermosyphon is analyzed as time evolves. It shows, in particular, that bubble activation and growth have the same trend as previous experimental visualization results, namely denser activation close to the meniscus. The velocity distribution shows also recirculation in the top of the condenser zones and above the liquid meniscus in the evaporator zone, too, as a direct effect of buoyancy and natural convection. As activated bubbles rise and coalesce into larger bubbles, the occurrence of a slug flow is observed. Furthermore, the tested model had shown its efficiency to predict the main fluid flow and thermal characteristics of a thermosyphon when pseudo-steady state is reached.
Suggested Citation
Lataoui, Zied & Benselama, Adel M., 2024.
"Modelling of heat and mass transfer in a two-phase closed thermosyphon,"
Energy, Elsevier, vol. 313(C).
Handle:
RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036296
DOI: 10.1016/j.energy.2024.133851
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036296. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.