IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035898.html
   My bibliography  Save this article

Computationally efficient assessment of fuel economy of multi-modes and multi-gears hybrid electric vehicles: A hyper rapid dynamic programming approach

Author

Listed:
  • Zou, Yunge
  • Yang, Yalian
  • Zhang, Yuxin
  • Liu, Changdong

Abstract

The powertrain configuration, sizing, and control are multi-dimensional intertwined. Synergy optimization of these three dimensions can yield the greatest benefits. However, the huge computational load limits its implementation. Especially for multi-modes and multi-gears (MMMG) transmissions. Thus, a more efficient optimization method with acceptable accuracy is urgently required. In this study, a near-global optimal method, called Hyper-Rapid Dynamic Programming (HR-DP), is proposed and discussed. The computation time is significantly reduced by optimization of candidate state and control domains, identification of optimal efficiency operating points, and parallel computation approaches. Subsequently, a thorough comparison of the HR-DP, Rapid-DP and DP methods was performed across various driving cycles. Compared to the DP algorithm, the computational efficiency is boosted by a factor of about 100,000, while the fuel consumption error is limited to 1.5 % in Real-world driving cycle (RWDC). Moreover, the HR-DP, in conjunction with particle swarm optimization (PSO), is employed for the first time to optimize essential sizing for MMMG configuration. The MMMG configuration with optimal sizing is demonstrated to be most energy-efficient, with 7.70%–10.6 % fuel-savings achieved, compared to the Toyota Prius. Therefore, HR-DP is well-suited for the design and optimization of HEV transmission configurations and sizing, significantly accelerating the development progress.

Suggested Citation

  • Zou, Yunge & Yang, Yalian & Zhang, Yuxin & Liu, Changdong, 2024. "Computationally efficient assessment of fuel economy of multi-modes and multi-gears hybrid electric vehicles: A hyper rapid dynamic programming approach," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035898
    DOI: 10.1016/j.energy.2024.133811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.