IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035734.html
   My bibliography  Save this article

A novel hybrid low-temperature thermal catalysis and radiative sky cooling system for day and night air purification and cooling

Author

Listed:
  • Xu, Feiyang
  • Che, Lei
  • Zhang, Guoyu
  • Cao, Xuhui
  • Li, Niansi
  • Song, Ge
  • Zhang, Kai
  • Ji, Jie
  • Yu, Bendong

Abstract

Thermal catalytic oxidation is an air purification technology that can efficiently and stably degrade volatile organic compounds. However, using thermal catalysis to purify indoor air in the summer can cause problems of indoor overheating. Radiative sky cooling is a passive cooling method that dissipates heat through reflection and radiation, which can provide sub-ambient cooling during day and night. In this study, a novel hybrid low-temperature thermal catalysis and radiative sky cooling system for day and night air purification and cooling was proposed, which combined thermal catalysis with radiative sky cooling, and used low-temperature driven thermal catalysts to solve the problem of indoor overheating in summer. A numerical model of the hybrid system was established to simulate the formaldehyde degradation and cooling performance of the system under different operating conditions. The results show that under summer conditions with an average daily temperature of 35 °C and humidity levels between 70 % and 80 %, the system produced a total of 665.29 m³/m2 of clean air after running for an entire day. The average single-pass conversion rate of formaldehyde was 0.46, and the maximum temperature difference between indoor and outdoor air was 5 °C. This provides guidance for the integration of the hybrid system with buildings.

Suggested Citation

  • Xu, Feiyang & Che, Lei & Zhang, Guoyu & Cao, Xuhui & Li, Niansi & Song, Ge & Zhang, Kai & Ji, Jie & Yu, Bendong, 2024. "A novel hybrid low-temperature thermal catalysis and radiative sky cooling system for day and night air purification and cooling," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035734
    DOI: 10.1016/j.energy.2024.133795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.