IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035515.html
   My bibliography  Save this article

Nonlinear finite-set control of clean energy systems with nuclear power application

Author

Listed:
  • Dong, Zhe
  • Li, Junyi
  • Zhang, Jiasen
  • Huang, Xiaojin
  • Dong, Yujie
  • Zhang, Zuoyi

Abstract

For clean energy systems such as wind, solar and nuclear plants, the output power is usually regulated by controlling the motion rate of actuators, e.g. the stepping motors utilized for sun tracking of solar photovoltaic panels, yaw and pitch angle positioning of wind turbines and control rod driving of nuclear reactors. By constraining the actuators' motion rates to a finite set of values, the control system of a clean energy plant can be much simplified with obvious enhancement in operation reliability but requires developing finite-set control methods correspondingly. Motivated by the benefit of adopting finite motion rates, a finite-set control method is newly proposed for the nonlinear systems describing the dynamics of clean energy plants, compensating for the quantization and saturation effects induced by adopting a finite set of motion rates while ensuring globally bounded closed-loop stability strictly under a sufficient condition. The method is applied to design a finite-set power-level control of modular high temperature reactors, demonstrating stable power-level control during a reactor ramping-down from 100 % to 50 % reactor full power (RFP) with a constant rate of 5 % RFP/min. The simulation results also indicate that under the regulation of the finite-set control law, the steady error of hot helium temperature can eliminated, and the overshoot of neutron flux and that of hot helium temperature can be reduced by approximately 66 % and 75 % through properly adjusting control parameters, providing practical insights for engineering applications.

Suggested Citation

  • Dong, Zhe & Li, Junyi & Zhang, Jiasen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2024. "Nonlinear finite-set control of clean energy systems with nuclear power application," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035515
    DOI: 10.1016/j.energy.2024.133773
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.