IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035394.html
   My bibliography  Save this article

Effects of mooring failure on the dynamic behavior of the power capture platforms

Author

Listed:
  • Cui, Lin
  • Wu, Haitao
  • Li, Meng
  • Lu, Mengyao
  • Liu, Weixing
  • Zhang, Zhiyang

Abstract

In recent years, for enhancing the ocean energy capture, it has been prevail to combine multiple wave energy converters (WECs) with the floating platforms. A power capture platform concepts is proposed in this paper based on the point-absorber WEC array and the SPIC semi-submersible platform. The present study conducts the time-domain dynamic analysis on the performance of the power capture platforms with mooring failure. After the validation of the numerical models, ANSYS-AQWA is employed to investigate the platform motion response, the remaining mooring lines' tension response, and the WEC array's power output. The results show that the platform motion and the remaining mooring lines' tension appear significant transient overshoots after mooring failure. The mean motion response of the platform increases because of the reduction of mooring stiffness. Meanwhile, the energy distribution of the platform slow-drift and roll motions at the low-frequency region increases as well. Moreover, the mooring line tension adjacent to the failed mooring line increases significantly, while that of other mooring lines decreases. Notably, mooring failure has slight effects on the WEC array's energy conversion performance, and the total absorbed power among Model 2 is more than that among Model 1. These important findings provide some insights into the design of power capture platforms. Moreover, to ensure the floating system stable and reliable, the effects of mooring failure and the resulting changes should be evaluated in advance.

Suggested Citation

  • Cui, Lin & Wu, Haitao & Li, Meng & Lu, Mengyao & Liu, Weixing & Zhang, Zhiyang, 2024. "Effects of mooring failure on the dynamic behavior of the power capture platforms," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035394
    DOI: 10.1016/j.energy.2024.133761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.