IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics036054422403528x.html
   My bibliography  Save this article

Design and optimization of large-scale natural gas liquefaction process based on triple refrigeration cycles

Author

Listed:
  • Pu, Liming
  • Xiong, Yingjie
  • Wang, Ke
  • Tang, Lin
  • Qiu, Limin
  • Wang, Kai

Abstract

In large-scale natural gas liquefaction, minimizing specific energy consumption has consistently been a primary objective. This study aims to develop a large-scale natural gas liquefaction process that balances energy efficiency and cost-effectiveness, presenting a viable option for industrial production. By employing a refrigerant strategy of “propane + mixed refrigerant + mixed refrigerant”, a novel large-scale natural gas liquefaction process based on triple refrigeration cycles (TRC) is proposed. To address the challenge of boil-off gas (BOG) re-liquefaction, the TRC process is further refined to integrate BOG re-liquefaction (TRC-BR). Thermodynamic models are built for the proposed TRC and TRC-BR processes, as well as the propane pre-cooled mixed refrigerant (C3MR) and AP-X processes as baseline cases. Global optimization is conducted using the Particle Swarm Optimization (PSO) algorithm, with the specific power consumption (SPC) serves as the objective function. The results reveal that the SPC of the TRC and TRC-BR processes are 0.2726 and 0.2704 kWh/kg-LNG respectively. Compared with the C3MR and AP-X processes, the SPC of the TRC decrease by 1.54% and 4.84%, respectively. The total investments for the TRC and TRC-BR processes are estimated at a similar level compared to the baseline cases, demonstrating their significant potential for industrial application.

Suggested Citation

  • Pu, Liming & Xiong, Yingjie & Wang, Ke & Tang, Lin & Qiu, Limin & Wang, Kai, 2024. "Design and optimization of large-scale natural gas liquefaction process based on triple refrigeration cycles," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403528x
    DOI: 10.1016/j.energy.2024.133750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403528X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403528x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.