IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035072.html
   My bibliography  Save this article

Power prediction for salinity-gradient osmotic energy conversion based on multiscale and multidimensional convolutional neural network

Author

Listed:
  • Wang, Pengfei
  • Liu, Yide
  • Li, Yuchen
  • Tang, Xianlin
  • Ren, Qinlong

Abstract

Osmotic energy conversion (OEC) is a promising renewable energy utilization technology that directly convers salinity-gradient energy into electricity. However, most of current studies on the OEC power under different nanostructures and solution parameters were conducted experimentally or by simulation, which is costly and difficult to explore the optimal OEC device configuration. In this study, we propose a multiscale and multidimensional convolutional neural network-based power prediction model for salinity-gradient OEC. It can learn intrinsic characteristics embedded in multi-physical and nanopore geometric parameters that are closely related to the osmotic power generation, thus realizing accurate OEC power prediction. For model development and assessment, a numerical model of the salinity-gradient OEC device with conical nanopores was developed using COMSOL Multiphysics to generate training and test datasets. The test results show that the mean absolute percentage error between the predicted powers and real powers of the OEC device is only 0.309 % over 4077 typical operating conditions. Furthermore, the prediction performance of the proposed model outperforms other four comparative models employing widely-used deep learning algorithms, indicating its effectiveness and superiority in OEC power prediction. This study contributes to the optimal design and performance enhancement of OEC devices.

Suggested Citation

  • Wang, Pengfei & Liu, Yide & Li, Yuchen & Tang, Xianlin & Ren, Qinlong, 2024. "Power prediction for salinity-gradient osmotic energy conversion based on multiscale and multidimensional convolutional neural network," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035072
    DOI: 10.1016/j.energy.2024.133729
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.