IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224034832.html
   My bibliography  Save this article

Incremental learning user profile and deep reinforcement learning for managing building energy in heating water

Author

Listed:
  • Yin, Linfei
  • Xiong, Yi

Abstract

Deep reinforcement learning (DRL) has garnered growing attention as a data-driven control technique in the field of built environments. However, the existing DRL approaches for managing water systems cannot consider information from multiple time steps, are prone to overestimation, fall into the problem of locally optimal solutions, and fail to cope with time-varying environments, resulting in an inability to minimize energy consumption while considering water comfort and hygiene of occupants. Therefore, this study proposes an incremental learning user profile and deep reinforcement learning (ILUPDRL) method for controlling hot water systems. This study employs hot water user profiles to reflect the hot water demand (HWD) habits. The proposed ILUPDRL addresses the challenges arising from evolving HWD through incremental learning of hot water user profiles. Moreover, to enable the ILUPDRL to consider information from multiple time steps, this study proposes the recurrent proximal policy optimization (RPPO) algorithm and integrates the RPPO into the ILUPDRL. The simulation results show that the ILUPDRL achieves up to 67.53 % energy savings while considering the water comfort and water hygiene of occupants.

Suggested Citation

  • Yin, Linfei & Xiong, Yi, 2024. "Incremental learning user profile and deep reinforcement learning for managing building energy in heating water," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034832
    DOI: 10.1016/j.energy.2024.133705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.