IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224034716.html
   My bibliography  Save this article

Comprehensive enhancement of melting-solidifying process in latent heat storage based on eccentric fin-foam combination

Author

Listed:
  • Zeng, Kuo
  • Gao, Junjie
  • Lu, Yongwen
  • Zuo, Hongyang
  • Chi, Bowen
  • Fang, Zheyu
  • Li, Jun
  • Xu, Huaqian
  • Li, Beiyang
  • Yang, Haiping
  • Chen, Hanping

Abstract

A novel fin-foam combination, applying upward fins to accelerate natural convection and downward foams to dominate thermal conduction, was established to comprehensively enhance the melting and solidifying performance of horizontal shell-and-tube latent heat storage devices. Enhancement mechanisms of the current design were numerically investigated and compared with the typical eccentric and concentric design the whole melting-solidifying process. Among investigated enhancement designs, the fin-foam combination achieved the best results, reducing the melting time and the solidifying time by 47.9 % and 55.4 % respectively. Meanwhile, the relative difference between the melting and solidifying time was reduced to 12 %, indicating a significant mitigation of the buckets effect of solidifying caused by eccentric designs. Further, the effect of the total enhancement material usage was investigated. Results showed that the marginal effect of the heat transfer enhancement started at 9 fins and 0.91 porosity, but the relative difference between melting and solidifying time then dropped below 0.61 %. The economic assessment showed that increasing the amount of enhancement material can significantly improve the storage capacity per unit cost when the price ratio of the enhancement material to PCM is less than 10, indicating a considerable applicability and cost performance of fin-foam combination under different power density demands.

Suggested Citation

  • Zeng, Kuo & Gao, Junjie & Lu, Yongwen & Zuo, Hongyang & Chi, Bowen & Fang, Zheyu & Li, Jun & Xu, Huaqian & Li, Beiyang & Yang, Haiping & Chen, Hanping, 2024. "Comprehensive enhancement of melting-solidifying process in latent heat storage based on eccentric fin-foam combination," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034716
    DOI: 10.1016/j.energy.2024.133693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.