IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224034704.html
   My bibliography  Save this article

The apparatus for atmospheric water harvesting in an arid climate - Prototype design and testing in laboratory conditions

Author

Listed:
  • Zmrhal, Vladimír
  • Matuška, Tomáš
  • Šourek, Bořivoj

Abstract

The paper describes the development of a prototype system for water extraction from the air. The aim was to develop a device that allows one to autonomously obtain, without the need for external energy, an annual average of 100 L of water per day during extreme desert conditions. In this paper, a mathematical model simulating the operation of the unit for extracting water from the air in any climatic conditions is presented. Psychrometric calculations for different climatic conditions were carried out for two basic principles: condensation and sorption. The analyses confirmed that devices based on the condensation of water vapour from the air can only be used to a limited extent in extreme desert conditions. The average water production of a condensation-based system is only 20 l/day in Riyadh, with an air flow rate of 2000 m3/h. A unit with a desiccant wheel and an integrated heat pump was designed for water harvesting from the air. The prototype of the unit was tested in a climate chamber with the possibility of adjusting the climatic conditions and the presented mathematical model was experimentally verified. The final prototype designed for a nominal outdoor air flow rate of 2000 m3/h will produce 168 l of water per day under dry desert conditions (Riyadh) with continuous operation. The verification of the computational model allows one to determine the real water production and the required unit performance. An analyses of energy requirements and evaluation of levelized cost of water (LCOW) have been performed. Sorption unit has lower LCOW in target arid desert climate and electricity prices under 0.1 EUR/kWh compared to direct condensation technology.

Suggested Citation

  • Zmrhal, Vladimír & Matuška, Tomáš & Šourek, Bořivoj, 2024. "The apparatus for atmospheric water harvesting in an arid climate - Prototype design and testing in laboratory conditions," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034704
    DOI: 10.1016/j.energy.2024.133692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.