IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224034479.html
   My bibliography  Save this article

Transient dynamic cycle evolution and thermodynamic performance analysis of a free-piston engine generator

Author

Listed:
  • Wang, Jiayu
  • Liu, Chang
  • Feng, Huihua
  • Jia, Boru
  • Zhang, Zhiyuan
  • Wei, Yidi

Abstract

The free-piston engine generator (FPEG) is a promising hybrid power system. Eliminating the crankshaft mechanism, it features a variable piston dynamic cycle distinct from traditional engines. This paper investigates transient dynamic evolutions, identifies the stable operation zone, and further analyzes thermodynamic performance under various key design parameters. First, a coupled dynamic-thermodynamic model is developed for FPEG. Second, transient dynamic evolutions from start-up to combustion-generation stage are analyzed. The boundaries of operating parameters are identified to ensure the presence of limit cycles for stable operation. Subsequently, the thermodynamic performance is comprehensively evaluated. The indicated power and thermal efficiency improve as load resistance and excess air ratio decrease. The maximum and minimum performance points consistently occur on the overshooting and damping lines, respectively. A lower piston assembly mass and higher design compression ratio are recommended to achieve higher indicated power and thermal efficiency. A lower stroke-to-bore ratio leads to higher indicated power with a slight decrease in thermal efficiency. Additionally, the load coefficient should be adjusted to ensure stable operation according to the design parameters. This paper enhances the understanding of transient dynamic evolutions of the FPEG and provides guidance for prototype design aimed at achieving stable operation and improved output performance.

Suggested Citation

  • Wang, Jiayu & Liu, Chang & Feng, Huihua & Jia, Boru & Zhang, Zhiyuan & Wei, Yidi, 2024. "Transient dynamic cycle evolution and thermodynamic performance analysis of a free-piston engine generator," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034479
    DOI: 10.1016/j.energy.2024.133669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.