IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224034455.html
   My bibliography  Save this article

Thermodynamic and economic analysis of a trans-critical CO2 energy storage system integrated with ORC and solar energy

Author

Listed:
  • Liu, Zhongyan
  • Guan, Hongwei
  • Jin, Xu
  • Su, Wei
  • Shao, Jiawei
  • Fan, Jing
  • Zhang, Hao
  • Li, Heng
  • Sun, Dahan

Abstract

In this paper, a CO2 energy storage system that integrates an organic Rankine cycle (ORC) with solar energy is proposed to support grid peaking, enhance the efficient use of renewable energy sources, and optimize system performance. A thermodynamic analysis of the system has been performed and the performance under different operating models is evaluated. In model A, the energy storage efficiency of the system is 77.28 %, the solar energy conversion efficiency is 30.7 %, and the exergy efficiency is 66.1 %. In models B and C, the energy storage efficiency is 76.72 % and 80 %, the solar conversion efficiency is 32.2 % and 31.5 %, and the exergy efficiency is 66.8 % and 65.2 %, respectively. To evaluate the thermodynamic and economic performance of the system, the effect of the decision variables on the system performance is analyzed. Then, the NSGA-II optimization algorithm was applied to optimize the system, and the TOPSIS method was used to evaluate the optimization results. The results show that the energy storage efficiencies under optimal operating conditions are 78.8 %, 77.5 %, and 81.1 % for operating models A, B, and C, respectively. In addition, the levelized cost of storage (LCOS) for operating models A, B, and C are 0.307$/(kW∙h), 0.316$/(kW∙h), and 0.318$/(kW∙h), respectively.

Suggested Citation

  • Liu, Zhongyan & Guan, Hongwei & Jin, Xu & Su, Wei & Shao, Jiawei & Fan, Jing & Zhang, Hao & Li, Heng & Sun, Dahan, 2024. "Thermodynamic and economic analysis of a trans-critical CO2 energy storage system integrated with ORC and solar energy," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034455
    DOI: 10.1016/j.energy.2024.133667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.